IAB/MRC Retail Media Measurement Guidelines

UNDERSTANDING MRC MEASUREMENT STANDARDS AND BUSINESS REQUIREMENTS FOR RETAIL MEDIA ORGANIZATIONS

JANUARY 2024
TABLE OF CONTENTS

Acknowledgements..4
IAB Retail Media Measurement Working Group...4
Company Participants..4
Main Contributors..5
Other Contributors..5

General Measurement Principles...9
Chapter 1: Data Collection, Processing, and Quality Control...10
 1.1. Data Collection and Processing..10
 1.2. Data Quality Checks and Monitoring...11
 Establish processes to maintain data accuracy, consistency, and completeness:................11
 Implement data quality audits and data validation checks...12

Chapter 2: Audience Measurement and Metrics..14
 2.1. Metrics Guidelines...14
 2.2. Audience Measurement..15
 Capture accurate audience reach and engagement...17
 Identifying users across devices...17

Chapter 3: Digital Ad Delivery and Viewability..19
 3.1 Ad Impressions...19
 3.2 Viewable Impressions..19
 Ad completion rates...20
 Duration Weighting..21
 3.3 Invalid Traffic (IVT)..21
 3.4 Reporting Requirements...22
 Ad placements and campaigns for retail media...22
 3.5. Outcome Metrics..23
 Track viewability metrics for outcomes..23
 3.6 Attribution..24
 Determining the weight or value of exposure type and modeling.....................................24
 Attribution window...25
 Time decay and recency...26
 Modeled attribution for unknown data...26
 Additional key considerations..27
 3.7 Traffic Sources..28

Chapter 4: Guidelines and Best Practices When Measuring Incrementality...................................29
 4.1 Methodologies to Measure Incrementality...29
 Randomized controlled trials (RCTs)..30
ACKNOWLEDGEMENTS

These guidelines have been developed by the IAB Retail Media Measurement Working Group, which operates under the umbrella of the IAB Retail Media Committee within the IAB Measurement, Addressability & Data Center. The creation of this document has been made possible through a collaborative endeavor involving both the Interactive Advertising Bureau (IAB) and the Media Rating Council (MRC).

IAB Retail Media Measurement Working Group

The primary objective of IAB Retail Media Measurement Working Group is to establish and release measurement guidelines for retail media organizations to create an updated and specific measurement framework—embraced by both buy and sell sides—for ads that appear onsite, offsite, online, and in-store.

COMPANY PARTICIPANTS

Albertsons Media Collective
Alliance for Audited Media
Amazon
Arc Worldwide
AutoZone
Best Buy Ads
Circana
Cooler Screens
CitrusAd
Crealytics
Criteo
CVS Media Exchange
Dart Innovation
DG Media Network
DoubleVerify
Eli Lilly & Company
Epsilon
Essence Mediacom
Fairlife
General Mills
Goodway Group
Google
Grocery TV
GroupM
Horizon Media
Incremental
Instacart
Kellogg Company
Kevel
Kroger Precision Marketing
Koddi
Liveramp
L’Oréal
Medill Spiegel Research Center
Meta
Microsoft
Mindshare
Monster Energy
NBCU
Night Market
Nordstrom Media
Oracle
Pacvue
Path to Purchase Institute
Peapod Digital Labs
Pinterest
Procter & Gamble
Publicis Groupe
Publicis Media
PubMatic
Quad
Quividi
Samba TV
Shipt
SMG
Target
The Coca-Cola Company
The Mars Agency
The Trade Desk
Threefold-Agency
TikTok
Transact
TransUnion
Uber
Ulta Beauty
UM Worldwide
Unilever
Vibenomics
VML Y&R, Commerce
Walgreens
Walmart Connect
Walton College
Yahoo Advertising
MAIN CONTRIBUTORS

Celia Van Wickle, Global Director, Head of Omnichannel Analytics, Mars
Claire Wyatt, Vice President, Business Strategy & Marketing Science, Albertsons Media Collective
Danielle Russell, Managing Director, Data, Measurement, & Analytics, Google
Jen Bryce, Head of Retail Media Partnerships & Investment, Unilever U.S.
Jill Cruz, Executive Vice President, Commerce Strategy, Publicis Groupe
Kelly Kachnowski, Vice President, Growth & Engagement, Data & Analytics Technology, The Mars Agency
Lucile Roose, Director, Global Product Solutions, Enterprise, Criteo
Mark Heitke, Director, Ads Product & Audience Strategy, Best Buy Ads
Michael Schuh, Vice President, Media Strategy & Product, Kroger Precision Marketing
Nicolas Pirog, Director, Measurement Strategy, Target
Paul Brenner, Senior Vice President, Retail Media & Partnerships, Vibenomics, a Mood Media company
Todd Hassenfelt, Senior Director, Global Digital Commerce Strategy & Execution, Colgate-Palmolive

OTHER CONTRIBUTORS

Aaron Dunford, General Manager, Nordstrom Media Network, Nordstrom
Abhishek Sheth, Lead Product Manager, Uber
Adam Skinner, Managing Director, Unified Retail Media, Epsilon
Alex Bloore, Vice President, Product, Data, Goodway Group
Alex Vinci, Vice President, Global Commerce Strategy, Publicis Media
Alexandra Gibbs, Senior Vice President, Commerce Media, Night Market
Alexandria Garripoli, Vice President, Product Management, Epsilon
Allyson Dietz, Senior Director, Product Marketing, TransUnion
Aly Anzalone, Senior Program Manager, Measurement Standards Compliance, Amazon Ads
Amanda Lopez Edwards, Marketing Strategy Lead, Accenture
Amie Owen, U.S. Head of Commerce, UM Worldwide
Amy Trueblood, Senior Brand Manager, Retail Media, Procter & Gamble
Amy Cronin, Senior Director, Performance Targeting & Analytics, The Mars Agency
Andrew Baird, Director, Marketing Analytics & Insights, AutoZone
Andrew Janis, Executive Vice President, Data Intelligence, Arc Worldwide
Andrew Reuegger, Senior Vice President, Pacvue
Andy Murray, Founder, Customer Centric Leadership Initiative, University of Arkansas
Asha Tantuwaya, Vice President Marketing Science, VMLY&R Commerce
Artem Lavrinovich, Chief Data & Product Officer, Cooler Screens
Beth Gross, Senior Director, Global Retail Media Partnerships, Yahoo Advertising
Betty Chung, Head of Growth, Retail Media, Microsoft
Bianca Hall, Senior Director, Insights, Threefold
Bob Perry, Director, Business Development, NBCUniversal Media LLC
Bobby Figueroa, General Manager, Commerce Insights, Criteo
Brea Keating, Senior Director, eCommerce Strategy & Operations, Monster Energy
Brian Spencer, Director, Marketing, Kroger Precision Marketing
Brian Melinat, Senior Manager, Sales Engineering, Measurement, Oracle
Carrie Craig, Director, Reporting & Insights, Best Buy Ads
Casey Harsh, Vice President, Commerce, UM Worldwide
Celeste Donahoe, Director, Retail Media Measurement, Amazon Ads
Chance Chapman, Executive Vice President, Innovation, VMLY&R Commerce
Chantal Joseph, Director, DTC Commerce Media & Innovation, Transact
Chaya Greisman, Senior Manager, Customer Engagement Analytics, Nordstrom
Chris Riegel, Chief Executive Officer, Stratache
Christy Ramroop, Vice President, Connected Commerce Strategy & Retailer Media Services, Transact
Courtney Crossley, Vice President, Commerce Media, The Mars Agency
Courtney Hein Juedes, Senior Director, Retail Partnerships, Pinterest
Cyndi (Loza) Hitchens, Managing Editor, Member Content, Path to Purchase Institute
Dallas Griffin, Head of Data, Grocery TV
David Peterson, General Manager, Global Head, Retail Media, Epsilon
David Young, Vice President, Shipt Media, Shipt
Dimitris Kalamatianos, Senior Vice President, Principal, Global Data Science Lead, Circana
Ekapat Chareonarp, Senior Vice President, Global Client Strategy, Criteo
Emily Dell, Manager, Customer Marketing Strategic Capabilities, General Mills
Eric Brackmann, Vice President, Commerce Media, Koddi
Gretchen Reisner, Direct, Client Insights & Strategy, CMX
Hashim Mian, Senior Director, Commerce Media, PubMatic
Heather McHone, Director, Data Science, Kroger Precision Marketing
Irina Shakhnovich, Manager, Marketing Science, Retail, Meta
Jack Lindberg, Director, Media Insights & Analytics, The Mars Agency
James Schwab, Vice President, Global Digital Commerce, Colgate-Palmolive
Jennifer Nuestro, Head of eCommerce, Fairlife
Jesse Leikin, Co-Founder, Senior Vice President Product & Technology, Incremental
Jessica Ellikson, Senior Director, Shopper Marketing, Fairlife
Jessica (Florey) Yaeger, Manager, Ad Analytics & Measurement, Walgreens
Jessie Bove Dowd, Editorial Director, Path to Purchase Institute
Joe Frick, Head of Partnerships Development, Data First, Oracle
Joel Johnson, Senior Manager, Reporting & Insights, Best Buy
John Storms, Head of Sales & Business Development, Lowe’s One Roof Media
Jonny Silberman, Head of Measurement & Analytics, Big Box Retail, Google
Joseph Frick, Head of Partnership Development, Oracle
Judy Bahary, Marketing Activation Executive, Accenture Song
Justin Carel, Senior Product Manager, Kevel
Kate Monaghan, Executive Vice President, Digital Investment & Retail Partnerships, Horizon Media
Katie Streeter Hurle, Chief Strategy Officer, Threefold
Kellen Axen, Director Insights, Lowe’s One Roof Media
Kenny Olson, General Manager, Digital Advertising and Retail Transformation, Quad
Kevin Rehberg, Vice President, Client Development, Alliance for Audited Media
Kristina Meinig, Vice President, Market Development, Alliance for Audited Media
Kumi Ebihara, Senior Director, Emerging Channels, The Trade Desk
Kyle Maurer, Vice President, Digital Marketing, Gaming, Monster Energy
Larry Degaris, Executive Director, Medill Spiegel Research Center
Lars Djuvik, Chief Sales Officer, Crealytics
Laura Taylor, Lead, Retail Investment, Goodway Group
Lauren Freedman, Senior Director, Integrated Marketing & eCommerce, Kellogg Company
Lauren Lavin, Executive Director, NA Commerce, GroupM
Leora Kelman, Partner, Boston Consulting Group
Lindsay Alexander, Senior Director, Global Digital Commerce Marketing, Colgate-Palmolive
Lorenzo Davis, Senior Product Manager, Audience, Identity, & Programmatic, Roundel
Lori Johnshoy, Head of Global Retail Media Network & CPG, Industry Strategy, LiveRamp
Margit Kittridge, Ad Tech Lead, AD Retail Media, Peapod Digital Labs
Mara Greenwald, Managing Director, Commerce & Biddable Media, Mindshare
Mark Bausinger, Director, Business Development, DoubleVerify
Matthew Lee, Founder, Threefold
Matthew Sabban, Lead, Measurement, Retail, Automotive, Dining, TikTok
Megan (Petrie) Ramm, Global Director, Head of CPG Partnerships, Uber
Melissa Baldwin, Retail Media Lead, Google
Melissa Burdick, Co-founder & President, Pacvue
Melissa Gallo, Executive Director, Head of Operations, CVS Media Exchange, CMX
Michael Ellgass, Executive Vice President, Media, CPG, Circana
Mitch Wade, Vice President Sales, NA, Quividi
Moitree Rahman, Senior Director, Consumer Data Strategy, U.S. Commercial Analytics, Eli Lilly and Company
Morgan Shaddock, Head of Industry, CPG, Retail, Pharma, Samba TV
Nandita Vaidyanathan, Marketing Science Partner, Meta
Neha Pandey, Measurement Lead, Google
Nick Miller, Principal Product Marketing Manager, Microsoft
Nikhil Sharma, Head of Performance & Insights, Roundel
Nikki Neary, Senior Vice President, Digital, Horizon Media
Olivier Duizabo, President, Quividi
Patrick Vesperman, Senior Director, Product Management, Retail Media Networks, Epsilon
Paul Longo, Global Head of Retail Media Sales, Microsoft
Paul Popescu, Head of Offsite, Microsoft
Paulo Cunha, General Manager, Audience, Kevel
Paulo Gaudencio dos Anjos, Director, Retail Media Analytics, Microsoft
Praveen Menon, Head of Analytics, Insights & Business Intelligence, CVS Media Exchange, CMX
Rachael Stein, Principle, Digital Growth Accelerator, Boston Consulting Group
Riyaad (Riy) Edoo, Executive Director, Commerce, Essence Mediacom
Robert Katz, Vice President, Global Product, Ecosystem Partnerships, Kantar Insights
Robyn Simburger, Director, Marketing, Merchandise Marketing & Media, AutoZone
Sarah Small, Director, Retail Data Partnerships, The Trade Desk
Scott Nagy, Director, Enterprise Partnership, Samba TV
Sean Crawford, Managing Director, NA, Threefold
Sean Mills, Senior Manager, Global Media Analytics & Insights, Procter & Gamble
Shawn McGahee, Head of Retail Media, Google
Simon Miles, Vice President, Global OmniChannel Commercial Strategy, The Coca-Cola Company
Stephanie Martone, Global Industry Lead, Measurement, Meta
Steve Guenther, Vice President, Digital, Auditing Services, Alliance for Audited Media
Steve Shee, Senior Director, Head of Advertising & Revenue Operations, Walmart Connect
Stewart Lin, Director, Product Management, Ad Measurement, Walmart Connect
Suraj Rajdev, Head of Analytics, Google
Swati Jain, Manager, Reporting & Measurement, Ulta Beauty
Taylor Andersen, Senior Product Manager, Roundel
Untika Grusz, Senior Manager Product Operations, Roundel
Vijoy Gopalakrishnan, Senior Vice President, Product Management, Circana
Vin Lay, Director, Targeting & Measurement, Albertsons Media Collective
Veronica Luik, Director, Market Intelligence, LiveRamp
Wenda Zhou, Product Manager, PubMatic
Willy Blesener, Commerce and Retail Media Analytics Lead, Transact
Xiangmeng Ge, Lead, Measurement & Reporting, DG Media Network
Yana Borokhov, Group Director, Retail Search, Horizon Media
Yasmin Rodriguez, Head of Retail Media, L’Oréal
GENERAL MEASUREMENT PRINCIPLES

Retail Media, for purposes of this document, refers to marketing to consumers near their point of purchase or choice between brands or products and includes online and/or in-store advertising. These guidelines are meant to apply to retail media organizations or other parties measuring this activity (generally referred to as retail media measurement organizations or vendors throughout this document). Measurement for retail media emphasizes the importance of adhering to the following general principles:

- **Transparency and consistency:** To maintain trust and credibility within the industry, it is essential to provide clear and comprehensive definitions and methodologies for each measurement aspect. This transparency ensures that stakeholders can easily understand and compare metrics. Consistency in applying these methodologies across different platforms, media types, and campaigns is also crucial in ensuring comparability and reducing discrepancies in measurement results.

- **Accuracy and reliability:** Retail media measurement is recommended to use robust measurement methodologies and technologies that are designed to minimize errors and biases, as well as account for factors that may affect measurement such as invalid traffic, viewability, extrapolation, and audience reach. Regularly reviewing and updating measurement techniques to adapt to the evolving media landscape is essential to maintain accuracy and reliability in the long term.

- **Privacy and security:** Retail media measurement is recommended to adhere to all applicable privacy regulations such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), and safeguard users’ personal information. Retail media measurement is recommended to employ best practices for data collection, storage, and processing to protect users’ privacy and maintain the security of their data. This includes implementing encryption, access controls, and other necessary security measures.

- **Compliance with industry standards and best practices:** By following the industry standards and best practices set forth by organizations such as the Media Rating Council (MRC), Interactive Advertising Bureau (IAB), and other relevant bodies, retail media measurement can ensure that measurement methodologies align with the expectations of advertisers, publishers, and other industry stakeholders. Compliance with these standards fosters confidence in the validity of measurement outcomes.
CHAPTER 1: DATA COLLECTION, PROCESSING, AND QUALITY CONTROL

1.1 DATA COLLECTION AND PROCESSING

- **Data capture, accumulation, and processing methods**: Retail media measurement is recommended to employ a comprehensive and consistent approach to data capture, accumulation, and processing with data capture that includes relevant metrics such as impressions, clicks, viewability, and outcomes to enable cross-network, channel and media comparisons. Accumulation involves aggregating data from various data sources. Primarily, retailers aggregate transactional data, loyalty data, and behavioral onsite/in-store data. Secondary data sources may include ad servers, publishers, and third-party measurement providers, mainly seen in retail media offsite activations. Methods are recommended to be designed to handle data efficiently, ensuring accurate results and minimizing the potential for errors or discrepancies.

- **Data quality assurance**: Retail media measurement organizations are recommended to implement robust quality assurance practices to maintain data integrity and accuracy. This includes validating data sources, routinely checking for inconsistencies, and applying techniques such as data cleansing and outlier detection where applicable. Measurement organizations that utilize data clean rooms are recommended to take steps to understand and monitor data quality and cleansing for external data sources used initially and periodically on an ongoing basis. For common principles, functions, limitations, and guardrails of Data Clean Rooms please reference IAB Techlabs Data Clean Rooms: Guidance and Recommended Practices Version 1.0. Quality assurance measures are recommended to address issues related to invalid traffic (IVT) to maintain the credibility of measurement results as required by MRC Standards and Guidelines.

- **Data validation and verification**: To ensure the accuracy and reliability of collected data, retail media measurement organizations are recommended to employ data validation and verification techniques. Validation involves comparing collected data with established benchmarks or first-party data measured in a compliant manner with industry standards, while verification involves cross-checking data with independent sources (this does not mean ad verification as defined by IAB/MRC). By performing these checks, retail media measurement organizations can identify potential errors or inconsistencies, allowing them to take corrective action as needed.

- **Data storage and retention**: Retail media measurement organizations are recommended to implement secure data storage practices compliant with IAB and MRC retention requirements, while adhering to applicable data privacy regulations. This includes encrypting sensitive data, controlling access to stored data, and maintaining secure backups. Additionally, retail media measurement organizations are recommended to establish clear data retention policies that dictate how long data is stored and ensure compliance with privacy regulations and convey these policies to data consumers and minimize the risk of data breaches.
1.2 DATA QUALITY CHECKS AND MONITORING

Ensuring data quality and validation is crucial for making informed decisions based on accurate and reliable information. High-quality data enables retail media organizations, advertisers and publishers to optimize their advertising campaigns and make strategic decisions that drive desired outcomes.

Establish processes to maintain data accuracy, consistency, and completeness:

Data Accuracy: Data accuracy refers to the degree to which the collected, processed, and reported data reflects the true value or performance of the measured metrics. Ensuring data accuracy is crucial for advertisers and publishers to make informed decisions and optimize campaigns effectively. Some ways to improve and maintain data accuracy include (either performed by retail media measurement organizations directly, or involving processes to inspect clean room data preparation, checking and cleaning performed for external data sources):

- Regularly calibrate and validate measurement tools and methodologies; periodically and at minimum annually.

- Establish and maintain consistent data collection processes; document this process for both internal and audit purposes.

- Filter out invalid traffic, such as bots, and remove duplicates; retail media measurement organizations can maintain and update this list by subscribing to IAB/ABC Spiders and Bots List or via internal lists (refer to Chapter 4.3).

- Compare data against known benchmarks or industry standards to identify and correct potential biases or inaccuracies.

Accuracy example: A retail media measurement organization can implement data validation rules such as range checks and data type constraints to prevent incorrect or inconsistent data from entering their measurement systems.

Data Consistency: Data consistency refers to maintaining uniformity and coherence in data collection, processing, and reporting across different measurement vendors, platforms, and channels. Ensuring data consistency is crucial for advertisers and publishers to make meaningful comparisons and informed decisions. Some ways to maintain data consistency include:

- Adopt standardized measurement methodologies and definitions across vendors, platforms, and channels.

- Conduct regular evaluations and comparisons of data from different sources to identify and address discrepancies or inconsistencies.
• Establish and adhere to data quality control procedures to minimize errors and maintain uniformity in data processing and reporting.

Consistency example: A retail media measurement organization can adopt standardized data formats, naming conventions, and data dictionaries to ensure consistency across different data sources and platforms.

Comprehensive data collection: Implementing robust and extensive data collection processes that cover all relevant platforms, channels, devices, creative performance data and user segments to capture the complete picture of the metrics being measured.

• **Data integration**: Combine data from multiple sources, such as first-party and third-party data, to provide a more complete and holistic view of the audience or campaign performance.

• **Addressing data gaps**: Identify and address needs for extrapolation and provide transparency into any gaps or limitations in the data collection, processing, and reporting methods to ensure that the data captures all relevant information.

Completeness example: A retail media measurement organization can use data profiling techniques to identify and address missing, incomplete, or outdated data, ensuring that their datasets are comprehensive.

Data Processing and Quality Control: Data processing and quality control are essential to ensure the accuracy, reliability, and consistency of data collected, processed, and reported. Robust data processing and quality control procedures help minimize errors, identify and address discrepancies, and maintain data quality standards. Key aspects of data processing and quality control include:

• **Data cleansing**: Remove errors, inconsistencies, or inaccuracies from the collected data, such as duplicate entries or incomplete records.

• **Data filtering**: Identify and exclude invalid traffic, such as bot-generated impressions or clicks, to maintain the integrity of the data.

• **Data validation**: Ensure the data adheres to predefined rules, formats, or standards (such as client definitions, rules defined and empirically supported by measurement organizations and IAB/MRC measurement Guidelines and Standards) and correct any deviations.

• **Data monitoring**: Regularly review and assess the data for accuracy, consistency, and completeness, and address any identified issues.
Implement data quality audits and data validation checks

A retail media measurement organization is encouraged to conduct frequent (at least annual) data quality audits (internal audits as well as external audits performed by independent parties) to assess the overall quality of their data, identify areas for improvement, and implement corrective actions to address data quality issues.

Validation and Verification: Validation and verification involve evaluating and confirming the reliability, accuracy, and consistency of data collected, processed, and reported by measurement vendors. MRC guidelines (such as the MRC Digital Audience, Cross-Media and Outcomes Standards) emphasize the importance of third-party validation and verification such as:

- Periodic audits by MRC or other independent third parties to assess adherence to industry standards and best practices.
- Compare data from multiple sources to identify discrepancies and ensure consistency.
- Evaluate the effectiveness of data filtering, cleansing, and processing procedures in maintaining data quality.

Data validation check example: A retail media measurement organization can establish automated data validation checks, such as duplicate detection and data reconciliation, to ensure that the data used in campaign measurement and analysis is accurate and reliable.

Third-party validation example: A retail media measurement organization can work with third-party validation services, such as the MRC or other independent auditors to ensure their measurement methodologies, processes, and data quality meet industry standards and best practices.

Third-party verification example: A retail media measurement organization can engage third-party verification services to independently assess the accuracy and reliability of their campaign measurement data, providing an additional layer of confidence in the quality of their data.

Error Rates and Confidence Intervals: Error rates and confidence intervals, where samples, projection, modeling, or estimation are used, provide information about the uncertainty and variability associated with the reported metrics. Providing error rates and confidence intervals in data reporting helps measurement users understand the level of uncertainty around the data and make informed decisions accordingly. Key aspects of error rates and confidence intervals include:

- Error rates: Indicate the proportion of measurements expected to contain errors or inaccuracies, expressed as a percentage of the total data.
• Confidence intervals: Provide a range within which the true value of a metric is likely to fall, with a specified level of confidence (e.g., 95% confidence interval).

• Methodologies for calculating error rates and confidence intervals: These may include statistical techniques, such as sampling, estimation, and hypothesis testing, to assess the variability and uncertainty of the data.

• Retail media measurement organizations should maintain detailed collected data (pre- and post-processing) supporting measurement for a sufficient period—at least twelve months after the release of data. Obfuscated or truncated data may be maintained to satisfy this requirement, should there be applicable personally identifiable information (PII) or privacy restrictions/regulations, but shall be available in a transparent manner to accreditation/certification auditors and at a detailed level to allow reprocessing of reported data where necessary (this means that raw records need not necessarily be retained in all cases, but data sufficient to allow reprocessing of reported results in case of error or misstatement as well as deemed sufficient by auditors should be). Known errors should be disclosed to measurement users as soon as is possible through client notification and quantification of impact or data restatement where applicable.
CHAPTER 2: AUDIENCE MEASUREMENT AND METRICS

2.1 METRICS GUIDELINES

These guidelines, along with the others that have been developed by the IAB and the MRC, are based on certain foundational principles, which are summarized as follows:

- Client-initiated counting is crucial. These guidelines rely on the central concept that counting should occur based on client-side signals, not server-side signals, and that counting should occur as close as possible to the final delivery of an ad to the client.

- Filtration procedures following IAB and MRC guidance are necessary to ensure that invalid activities (invalid traffic, for example, such as known or suspected robot/spider-originating transactions) are excluded from measurement counts.

- Transparency to data users is a paramount goal of these guidelines. Appropriate disclosures are recommended to be made to users concerning the measurement methodologies employed. Appropriate disclosures include the proper labeling of measurement metrics as defined in this guideline as well as detailed descriptions or processes employed to measure users while considering protecting proprietary information.

- Accountability (record keeping and transaction legitimacy) should remain the responsibility of the measuring/selling organization and not be delegated to transaction partners which help facilitate completion of measured transactions. Selling organizations are recommended to keep necessary records and evaluate transaction partners for legitimacy.

Beyond filtration and other controls described herein, if the audience reach measurement organization has high confidence that the audience activity did not originate through legitimate accessing of content or advertising via a user’s browser (for example, those originating through robot, spider, fraud, or spam activities), the audience activity should be excluded from valid counts per MRC Digital Audience Standards requirements. Therefore, visits or ad impressions not meeting quality standards (e.g., that were removed as a result of HTTP invalid user agents, robot and spider filtration, or other forms of filtration) should have associated audience reach activity removed insofar as possible by the measurement organization per MRC Digital Audience Standards requirements.

2.2 AUDIENCE MEASUREMENT

Audience measurement methodologies and techniques are essential for understanding the reach, engagement, and composition of the audience exposed to a campaign executed through retail media organization. These methods help to ensure that campaigns are effectively reaching the intended audience (either demographic or behavioral segments such as purchase). Retail media measurement organizations are recommended to adhere to the MRC Digital Audience-Based Measurement Standards (link) where applicable.
Audience measurement refers to the process of quantifying the size, composition, and engagement of an audience exposed to a specific advertisement or media campaign. In retail media, audience measurement methodologies and techniques are used to quantify the exposure group and serve as the foundation for attribution and outcome measurement and may take the following forms:

- **Demographic Segmentation**: Demographic segmentation involves dividing the audience based on attributes such as age, gender, income, education, and occupation. This type of segmentation is commonly used in advertising to target specific consumer groups that are more likely to be interested in a product or service.

- **Geographic Segmentation**: Geographic segmentation involves dividing the audience based on their location such as country, region, city, or postal code. This allows advertisers to tailor their campaigns to the preferences and needs of consumers in different geographic areas.

 ◊ **Methodology**: Geographic segmentation can be achieved using data from IP addresses, mobile location data, the digital or physical storefront location, or user-provided location information (with their consent). This data can be used to deliver ads that are relevant to users based on their location, such as promoting a nearby store or a product that is popular in a specific region. Geographic measurement of retail media are recommended to adhere to the MRC Location-Based Advertising Measurement Guidelines (link) where applicable.

- **Behavioral Segmentation**: Behavioral segmentation involves dividing the audience based on behavior, such as browsing history, search queries, ad engagement or ad creative engagement and purchase history. This type of segmentation allows advertisers to target users based on interests and preferences, which can improve the relevance and effectiveness of ad campaigns.

 ◊ **Methodology**: To perform behavioral segmentation, advertisers can use data from a loyalty card or digital transactions, cookies, device identifiers, or user-provided information (with their consent). This data can be analyzed to identify patterns and preferences, which can be used to create targeted campaigns that appeal to users based on their online behavior.

- **Psychographic Segmentation**: Psychographic segmentation involves dividing the audience based on personality traits, values, attitudes, and lifestyle preferences. This type of segmentation can help advertisers create more personalized and engaging campaigns that resonate with their target audience.

 ◊ **Methodology**: Psychographic segmentation can be achieved using data from surveys, social media profiles, or other sources that provide insights into users’ personalities and preferences with their consent. This data can be used to create targeted campaigns that align with the values and interests of specific audience segments.
• Third-Party Audience Segmentation: Although not seen as much and not a requirement for retailers or media networks to have, third-party audience segmentation involves dividing the audience based on data provided by separate organizations not affiliated with the retail media organization (client or segmentation partner). This type of segmentation can help advertisers align media targeting with their own customers or across other media activations, as well as target audiences retail media organizations are unable to identify with first-party data.

◊ Methodology: Third-party audience segmentation can be achieved through matching third-party datasets to the retail media organization users/visitors via the identifiers for calculating unique reach. Matching can be done directly, within clean rooms, off-site publishers, or managed by third-party matching suppliers as long as all approaches are conducted via a secure privacy compliant process meeting legal and contractual requirements of all parties involved. Transparency in how third-party matching is conducted through any available approach is required.

Capture accurate audience reach and engagement

• Retail media measurement organizations are encouraged to use metrics such as unique visitors to measure the size of the audience exposed to the campaign, and viewable impressions, unique visitors, or dwell time to measure audience engagement.

• Retail media measurement organizations are recommended to track interactions with the ads such as clicks, taps, or swipes, to assess how effectively the creative elements are engaging the audience.

• Retail media measurement organizations are encouraged to measure the frequency and duration of ad exposures to understand the intensity of the campaign’s reach and its potential impact on the target audience as required by MRC Digital Audience, Cross-Media and Outcomes Standards.

Identifying users across devices

Measurement organizations are recommended to disclose to the end user through the provision of concise, clear privacy policy notices describing how their app products and/or web services use and share data and what the consumer’s choices are. In connection with end users who voluntarily disclose data, the use of clear opt-in practices is required and vendors are encouraged to establish first-party relationships for collection of audience data where feasible. This is particularly important with regard to tracking users across devices or sites.

Device IDs, advertising IDs, and statistical IDs are primarily mobile device markers. The key difference between device and advertising IDs is the persistence of the ID with the device. Whereas device IDs are tied to the hardware or software of the device, advertising IDs can be reset by consumers so that past
behavior is not associated with their new advertising ID. Statistical IDs—determined independently by each individual measurement organization—are inherently different than device IDs and advertising IDs in that they are not supplied directly by the device itself. Instead, they are determined and assigned by the measurement provider based on statistical analysis of disparate device signals.

Device graphs rely on deterministic and probabilistic methods:

- **Deterministic Approaches:** The deterministic method relies on personally identifiable information (PII) to make device matches when a person uses the same persistent identifier—such as email addresses, a phone number, or credit card information, etc.—when logging into an app or website. When a user logs in at any point across multiple devices, deterministic data providers can associate those device IDs in a device graph and use that information to identify or target the same user across multiple screens. This approach generally cannot determine when other individuals—friends, family, etc.—are using a primary user’s device and as such measurement vendors using deterministic approaches to identify users across devices should account for such situations.

- **Probabilistic Approaches:** By drawing on statistical techniques, probabilistic approaches may incorporate thousands of anonymous data points—things like device type, operating system, location data associated with bid requests, time of day, and a host of others—to identify statistically significant correlations between devices. Signals may also be drawn from known multi-user identifiers like IP addresses, or from geographic regions. By using IP (or other device signals) or geo technology—which can establish a ZIP code or other geographical coordinates from an IP address or digital signal—the incorporation of additional aggregate signals is possible.

 - Based on these signals, probabilistic techniques attempt to determine the devices that are likely being used by the same person. Once this determination is made, that provider would likely assign a particular statistical ID to the device. For example, if a smartphone, desktop computer, and a laptop connect to the same networks or WiFi hotspots at the same time and in the same places every weekday, one may develop a degree of confidence that all three devices belong to a specific person (although within households this may represent different people living in the same place).

 - Probabilistic approaches are generally considered less accurate than deterministic approaches when associating device pairings, as they are largely based on inferred and/or modeled data. However, these solutions may have greater flexibility to scale across devices, meaning that device mappings can potentially incorporate more overall consumer devices than deterministic partners.

- **Hybrid Approaches:** By combining deterministic methods, where user-level data is available for
only a portion of users, with probabilistic methods, when only aggregate data or limited user-level data is available for remaining users can promote greater accuracy and scale achievable through hybrid methods. Hybrid methods can additionally be applied to improve the accuracy of deterministic methods leveraging both user-level data and modeling of aggregate data to fill gaps in understanding that certain household, device, or registration identifiers may have in associating to a specific user. MRC Digital Audience Standards state that the sources of assignment data, data assignment or integration methods, and data sets involved in data integration processes should be disclosed to measurement service customers. Inferences, adjustments, and assignment of audience information as well as projection methods and impacts should also be disclosed with the reported estimates. Measurement organizations are recommended to be transparent regarding the use of hybrid methods, and report metrics based on the counts and proportions of devices associated with users through deterministic, probabilistic, or hybrid methods; as well as if each method is used independently or in combination to make these associations.
CHAPTER 3: DIGITAL AD DELIVERY AND VIEWABILITY

3.1 AD IMPRESSIONS

The IAB/MRC definition of an ad impression refers to an ad that has been successfully delivered to a user’s device and has begun to render on the web page or app (inclusive of post-buffer and playhead movement for video). This metric, however, does not necessarily mean that the ad was seen by the user. For example, the ad might have been loaded on a part of the web page that the user never scrolled to or was obstructed by other content. Retail media measurement organizations are recommended to measure digital ad impressions consistent with IAB/MRC Guidelines including specific requirements (where applicable) related to:

- Pre-Fetch and Pre-Render
- Auto-Refresh
- Auto-Play and Continuous Play
- Offline Application Activity

Retail media organizations may use one or a subset of elements that make up a campaign to measure ad delivery (such as the title, product name, or call-to-action element). IAB/MRC Guidelines require begin-to-render measurement of digital creatives. As such, it is important that retail media measurement organizations ensure that creative is being delivered consistent with IAB/MRC Guidelines when measuring impressions and study the incidence of situations where impressions are reported but certain elements of the creative (such as the creative image itself or product description) do not begin to render. Such practices are recommended to be disclosed to measurement users. The incidence and impact of such practices are encouraged to be studied by retail media measurement organizations and made available to users in placement reporting per MRC requirements.

In-store impressions are recommended to adhere to the MRC Digital Place-Based Audience Measurement Standards which are discussed separately in this document in Chapter 6.

3.2 VIEWABLE IMPRESSIONS

A viewable ad impression is a more accurate measure of an ad’s visibility, as it takes into account whether the ad had the opportunity to be seen by the user. According to the MRC Viewable Ad Impression Standard (link), an ad is considered viewable if it meets specific criteria. For display ads, at least 50% of the ad’s pixels must be visible on the user’s screen for a minimum of one continuous second. For video ads, at least 50% of the ad’s pixels must be visible on the screen for a minimum of two continuous seconds. Where applicable, measured, and reported, retail media measurement organizations (or third parties measuring on behalf of retail media organizations) should directly measure viewability consistent with MRC Guidelines.
Note that MRC allows for considering an impression viewable to the extent it is clicked or tapped (strong user interaction; click measurement should adhere to IAB/MRC Click Measurement Guidelines (link) even prior to the above viewable criteria being met. However, measurement with strong user interaction for viewability determinations is required to support and disclose this approach and appropriately account for accidental and incidental clicks and taps (especially in mobile due to navigational mistakes) per MRC Viewability Guidelines.

Further, the full dimensions of the creative inclusive of all elements should be used when making viewability determinations per MRC requirements.

In situations where custom time or pixel thresholds above the minimum MRC criteria are used in classifying an impression as viewable, MRC requires such parameters to be clearly disclosed and labeled in reporting (including a means to note user-configured parameters in reporting). MRC further requires that custom viewability reporting above minimum thresholds must be in addition to standard viewability reporting, not in lieu of it; impressions that do not meet the MRC minimum time and/or pixel thresholds must not be reported as viewable.

Retail media organizations are recommended to report all MRC-required viewability-related metrics including viewable and measured rates per MRC requirements. Reporting distinctions apply to, and are recommended to be made for, onsite and offsite measurement along with disclosures related to any differential measurement ability or limitations for each.

Due to site restrictions by retailers, providing onsite viewability tagging for each advertising partner is generally not possible. However, the retailer is recommended to still plan on providing required viewability metrics and transparency around viewability partners where applicable.

Offsite measurement may be the responsibility of offsite partners, such as platforms and other publishers, and if so, this should be disclosed. If offsite measurement and reporting that is the responsibility of entities other than the retail media organization itself is made available to users of retail media reporting, efforts are recommended to be made by the retail media organization to provide access to disclosures regarding the nature of this measurement and to determine if this measurement is consistent with industry standards.

Ad completion rates
Ad completion is a metric that measures the percentage of video ads that play through their entire duration. This metric is important for evaluating delivery of a video creative.

- **Video completion rate:** This metric calculates the percentage of video ads that are played to completion (i.e., played until the end). This can also be reported on the basis of viewability (viewable completion).
• Interaction completion rate: For interactive ads, this metric measures the percentage of users who complete the desired interaction (e.g., filling out a form, playing a mini-game, or exploring a 360-degree image).

Retail media organizations are encouraged to measure and report video and interaction completion metrics where applicable. MRC requires disclosure and reporting of forced duration (where a user is unable to skip for a period of time) differentially where known by a measurer.

Duration Weighting

Duration weighting, as defined in the MRC Cross-Media Audience Measurement Standards (link), is a measure of viewable playback time relative to the length of the creative. Duration weighting is not a measure of ad effectiveness and it is not recommended on a standalone basis in this manner. Duration weighting provides a measure of how much time across all delivered viewable impressions was spent. Duration weighting also accounts for differing ad lengths, making separate gross rating points or GRPs for creatives of different length more comparable and normalizes exposure across platforms and media. Duration weighting is encouraged to be measured and reported by retail media organizations and required by MRC for cross-media measurement and comparisons.

3.3 INVALID TRAFFIC (IVT)

The MRC Invalid Traffic Detection and Filtration Standards (link) define requirements for general invalid traffic (GIVT) and sophisticated invalid traffic (SIVT). All digital measurement for retail media organizations should at least meet MRC GIVT requirements (inclusive of reported filtration levels) and are strongly encouraged to also meet SIVT requirements. The MRC requires SIVT filtration for measuring outcomes, considering it as “audience measurement.” Outcomes measures that don’t incorporate SIVT filtration can still be reported but should be properly labeled, reported separately, and should include clear disclaimers.

Some datasets used in outcomes measurement such as confirmed sales or point-of-sale (POS) datasets might be inherently “IVT-free.” However, certain aspects of these datasets might be invalid (e.g., fraudulent accounts) and must still be subjected to quality control, including analysis and filtration for invalid activities per MRC requirements.

It is possible that retail media organizations are subject to a high degree of automated activity such as crawling and scraping for pricing and competitive information. While retail media organizations are encouraged to employ site governance to prevent unknown and nefarious automated activity, all such automated activity should be filtered from reported/monetized measurement and disclosed to measurement users per MRC requirements. Retail media organizations may differentially report on such activity to distinguish it from other forms of IVT. The activity must still be included in General IVT reporting with the option to separately report the activity as well.
Finally, IVT decision rates should be disclosed as required by MRC and the inability to collect sufficient signals to make IVT determinations (including for non-owned and operated properties) should result in disclosed unknown IVT (not valid or invalid by default).

3.4 REPORTING REQUIREMENTS

- Granular reporting of impressions and viewable and non-viewable ad impressions as well as video duration and completion metrics where applicable as well as filtration of IVT for reported metrics. IAB and MRC Guidelines and Standards require reporting at the placement level.

- MRC Viewability Guidelines require reporting on measured rates, viewability rates, and the reasons for the inability to measure and non-viewability (e.g., user action, technical issues) where viewability is measured and reported.

- Adherence to the MRC Minimum Standards for Media Rating Research [link]

Ad placements and campaigns for retail media

- Consider ad viewability to the right shopper within the right environment to maximize advertising impact where applicable and appropriate.

 ◊ **Example**: A retail media measurement organization adjusts ad placements on a retailer’s app based on viewability metrics to increase visibility and engagement.

- Identify and address factors contributing to non-viewability

 ◊ **Example**: A retail media measurement organization discovers that certain ads are not viewable due to slow loading times and works with the retailer to optimize their website for faster ad loading.

- Use viewability data to optimize ad placements on retail platforms

 ◊ **Example**: A retail media organization overlays viewability data on outcomes data to identify high-performing ad placements on a retailer’s website and prioritizes these locations for future campaigns. Viewability data can be used as a factor that can help optimize ad placements on retail platforms, but two ads with the same view rate can have very different performance when considering other parameters influencing results (e.g., targeting, relevancy, creative, attention, and engagement, etc.).

- Track viewability metrics to evaluate campaign performance and ROI across other retail media organizations
Example: A retail media organization provides regular reports on viewability metrics to a retailer, allowing them to gauge the success of their ad campaign and adjust their strategy accordingly.

3.5 OUTCOME METRICS

Outcome metrics are essential to evaluate the effectiveness of advertising campaigns and determine their impact on driving desired results.

In general, online and offline ad activity for retail media measurement organizations are recommended to contribute to and be used in measures of outcomes consistent with the MRC Outcomes and Data Quality Standards (link).

The MRC requires SIVT filtration for measuring outcomes, considering it as “audience measurement.” Outcomes measures that don’t incorporate SIVT filtration can still be reported, but should be properly labeled, reported separately, and should include clear disclaimers per MRC requirements.

The following represents specific retail media considerations in addition to those requirements. If outcomes are reported for retail media organization activity and used for pricing or optimization considerations, they are encouraged to be subject to third-party audit and validation.

Track viewability metrics for outcomes

The MRC requires viewable impressions for attribution of outcomes to ad exposures, and this document recommends retail media measurement be compliant with MRC requirements and ultimately, accredited. We acknowledge that the majority of retail media organizations may not reflect or consider viewability in attribution today, and we expect all retail media and publisher organizations will need to move in this direction. Digital display and video viewability requirements are detailed in the MRC Viewable Ad Impression Measurement Guidelines and cross-media viewability requirements for other media are detailed in the MRC Cross-Media Measurement Standards (link).

Attribution measures based in part or in whole on impressions that are non-viewable (including cases in which viewability cannot be measured due to technical limitations such as may occur for CTV) may still be reported. However, they must be properly labeled with a clear disclaimer (these would not be considered fully compliant) alongside fully compliant attribution metrics.

Methodologies used for measuring outcomes might not need to incorporate viewability. For instance, “strong user interaction” such as a click or tap can serve as a proxy for viewability. Similarly, first-party collected data through panels or surveys where respondents directly confirm exposure to ads as well as randomized control experiments can reduce the need for viewability measurement. However, such methodologies are encouraged to undergo rigorous quality control to minimize biases, false positives, and other errors.
For interactive retail media organization ads, clicks should be measured consistent with IAB/MRC requirements and MRC Outcomes and Data Quality Standards requiring click resolution as well as tying clicks to valid impressions and directly associating these clicks to attributed conversions.

3.6 ATTRIBUTION

Attribution is the practice of assigning credit for consumer actions, like sales or visits, to specific marketing efforts. Done at an individual or household level, it aims to directly link ad exposure to outcomes.

Determining weight or value of exposure type and modeling

Attribution approaches should assign value or weight to different exposures or touchpoints, with the process being suited to the campaign objective, supported by evidence, and disclosed transparently.

Such attribution values can be biased due to data availability. Cross-media considerations, while not compulsory, are strongly recommended to counter such biases.

It should be noted that while these Standards encourage Cross-Media coverage for measurement of ad and media exposure, especially when measuring the effects of campaigns or content delivered in more than one medium, they do not require cross-media measurement to be in all measures of Outcomes. However, to the extent the campaign or content being measured is delivered in more than one medium, related measures of Outcomes or effectiveness that do not account for one or more media in which the campaign or content is delivered are recommended to disclose this fact to end users of the measurement. Further, the nature of any biases or errors associated with omission of measurement of one or more media is recommended to be generally disclosed and quantified when material and determinable. Measurers are encouraged to measure all applicable media associated with the Outcomes of a campaign or content delivery where possible.

The larger availability of digital exposure data compared to other media measurement might bias attribution approaches that do not properly account for other media. An attribution method only considering digital data, for instance, might wrongly attribute outcomes to digital that are actually influenced by television. The same bias could occur due to non-media and external factors. Many attribution approaches may not account for elements such as price, promotion, influencers, PR, competition, weather, economy, and other factors that can influence consumer actions. Therefore, the weights assigned to exposures may not reflect the broader context.

Attempts are recommended to be made to study and account for less available data and external factors. If these are not considered, the potential impact is recommended to be disclosed and quantified in reported results. Using general or random statistical approaches to assign weights, instead of robust correlation or evidence-based approaches, is recommended to be justified and supported.
Retail media measurement organizations are encouraged to provide advertisers relevant data to integrate and execute retail media organization investment/metrics data into their media and market mix modeling (MMM) as needed. At a minimum, it is recommended that an advertiser get a dataset with basic data elements needed to include and execute within their MMM (designated market area, format, time, daily/weekly, impressions, clicks, campaign, audience, device, and cost).

With regard to modeling, retail media organizations are recommended to be transparent if they are modeling to account for sales that take place at other retailers (e.g., modeling out sales that might have occurred outside of the retailer footprint). At minimum, SKU-level reporting is recommended where relevant unless otherwise unavailable (where disclosed and supported), given most investment is to promote specific SKUs; reporting of any halo products being counted for is encouraged to be transparent.

Attribution windows

The attribution or lookback window is the time over which exposure will be considered for attribution. Again, such windows must be empirically supported, but they must also be logical with regard to campaign objectives and length as well as category sales cycles. The attribution or lookback window may be set based on certain assumptions of media performance but must be supported and consistent across similar objectives. These windows must be disclosed before campaign execution and measurement and as part of disclosures corresponding to reported results.

Measurement providers must establish empirically supported limits to the length of a lookback period, which may be different for different campaign goals and approaches, with defensible audit evidence maintained supporting them, or different retail verticals where purchase cycles are varied.

Marketers will sometimes need to make decisions based on a shorter time period of measured sales. In these cases, it is common for the measurement provider to forecast the full 12-month effect of the campaign. The basis for such forecasts must be disclosed and the methodology for extending shorter period results to 12 months or longer periods should be re-evaluated periodically based on empirical evidence.

Appropriate attribution windows may vary depending on the product, category, and campaign objective. While this document does not seek to prescribe specific attribution windows, it should be noted that typical attribution windows for digital measurement are often 3, 7, 14, 28, or 30 days and retail media measurement organizations are encouraged to establish consistent and comparable attribution windows for standardized product types and categories. In any case, a reasonable maximum attribution window should be established with support and applied consistently, as well as disclosed to measurement users. While attribution windows may differ across retail media organizations, consistent granularity of component days (data providing day-level granularity on the basis of when an ad was viewed or clicked relative to when a conversion occurred should be made available to a measurement user by a retail measurement organization) is encouraged to allow reconciliation across differing windows. Future efforts...
by IAB and MRC may need to be made to more specifically prescribe standard attribution windows for product types and categories common to retail media.

Time decay and recency

- Credit Attribution: Time decay curves and recency parameters allocate more “credit” to recent customer touchpoints in the attribution model.

- Provision/Exceptions for Post-Campaign Window: Where campaign periods for the same brand are successive, model the post-campaign ad stock for the earlier campaign so providers do not misattribute sales from the latter campaign to the earlier campaign.

 Example: Brand X has Campaign 1 running from January to March. Brand X has a new campaign running April to June. Assuming a four week lag period for Campaign 1, it is appropriate to project incremental sales for the lag period for Campaign 1 rather than misattribute actual sales in the lag period (so as not to take credit for incremental sales that may have occurred due to Campaign 2).

- Campaign Specificity: Such an approach isn’t universally effective and is recommended to be tailored to the specific objectives of a campaign and supported by empirical evidence.

- Periodic Validation: The research that informs these time decay curves is recommended to be revisited and validated regularly (at least annually) to remain reliable.

Modeled attribution for unknown data

Many retailers report on media performance through event-level attribution (also sometimes referred to as closed-loop attribution). Closed-loop attribution often involves models that involve the use of extrapolation techniques to show the full impact of a campaign on brand sales.

Modeled attributions for unknown data are typically needed because not every ad that is served can be traced back to an identified user/consumer or, even if traced to a consumer, the retailer may not have full traceability to all behavioral data (e.g., transactions). Therefore, the sales that can be directly attributed to specific users may not represent the full impact of the campaign (as there are users who saw or heard ads and made purchases but cannot be identified). There are several potential reasons why a retailer may not be able to identify a user/consumer:

- Cash transactions

- Limitations of credit/debit card payments or loyalty card capture rates
• Privacy settings on devices/browsers

• Etc.

Modeled attributions for unknown data or extrapolation can therefore be defined as a set of rules used to estimate the impact of media on non-identified users or behaviors by leveraging the media impact of a set (or all) identified users/consumers. Retailer media measurement organizations are recommended to disclose the following:

• Which metrics the extrapolation is done through. For example, a retail media measurement organization could assume that sales per impression are the same for non-identified users as identified users.

• Certain metrics should not have extrapolation applied to them (e.g., impressions served, viewability rate, etc.).

• How the retail media measurement organization is or isn’t accounting for the impact of cash transactions and other low-traceability payment methods.

• The percentage of attributed outcome metrics (sales, units, visits, etc.) that are extrapolated within each measurement deliverable (e.g., 20% of attributed sales in ROAS calculation are extrapolated) as required by MRC Minimum Standards (link) and MRC Outcomes and Data Quality Standards (link).

• Assumptions considered in the extrapolation and what has been performed to validate the assumptions such as limitations of chosen attribution methods.

Additional key considerations

• Bias Minimization: Efforts should be made to minimize any biases in the training and evaluation data.

• Define Audience Universe: The audience universe should be defined clearly, using accepted sources and adjusting for limitations in coverage, especially in areas like offline or non-addressable media, per MRC Outcomes and Data Quality Standards, section 3 (link).

• Manual Review: While models are useful, there should also be manual human oversight to focus on known biases or limitations.

• Explainability: Per the MRC Outcomes and Data Quality Standards, consideration must be given upfront to how measurement services will demonstrate the purpose and quality of the model in an audit setting and be generally disclosed.
• Data Quality and Relevance for Outcomes Prediction: There should be set minimum data sample sizes and quality thresholds while ensuring empirical evidence links the chosen data/parameters to the outcomes (see section 2.3 of the MRC Outcomes and Data Quality Standards). This approach ensures robust, relevant data for accurate model predictions.

The overarching themes are transparency, empirical support, and ongoing validation. The guidelines aim to promote a uniform, accurate, and accountable approach to attribution in media and advertising.

3.7 TRAFFIC SOURCES

As discussed in the MRC Invalid Traffic Detection and Filtration Standards Addendum (link), digital media publishers and retail media organizations may acquire visitors or traffic through third parties that are not organic to the publisher’s property. For audience measurement (covered separately as part of the MRC Cross-Media Audience Measurement Standards) and outcomes measurement (covered separately as part of the MRC Outcomes and Data Quality Standards), MRC requires all inorganic traffic categories to be segmented and disclosed. As a result, MRC requires measurement organizations to develop segmentation and reporting mechanisms to distinguish all categories.

Where known, through referrer, known buyer/seller arrangements, or other analytics, MRC requires measurement organizations to present a segmentation of relevant measured activity differentiated by traffic categories at least at campaign level granularity.

These MRC reporting requirements are applicable to the extent traffic is included within and reported as a part of outcomes measurement services. If traffic is not directly reported, MRC requires these categories to be internally considered and differentially treated with regard to their impact on and attribution to outcomes. This document encourages adherence to these MRC traffic sourcing requirements. Further, efforts should be made by retail media organizations to determine and consider traffic sources, previous advertising exposure on other properties and within other media, as well as previous indicators of purchase intent when considering attributing outcomes to ad exposure.
CHAPTER 4: GUIDELINES AND BEST PRACTICES WHEN MEASURING INCREMENTALITY

Incrementality measures the true value created by any business strategy, determined by isolating and measuring related results, independent of other potential business factors. In other words, incrementality is the potential causal impact of marketing. Specifically, for retail media organizations, it represents the causal impact of marketing and is often linked to outcomes like sales or attributed to advertising campaigns or exposures.

To measure incrementality, various methodologies are employed. These techniques leverage estimations of baseline sales to calculate incrementality. Scientific experiments such as randomized controlled trials (RCTs) aim to utilize the most unbiased baseline estimate to measure the incrementality of outcomes by randomly dividing a sample into those who were exposed and those who were not exposed to a marketing activation.

Here are the guidelines retail media organizations should follow while dealing with incrementality:

- **Clear Understanding of Incrementality**: Recognize incrementality as the measure of the value above and beyond a baseline produced by a marketing strategy, isolated from other potential business influences.

- **Data Integrity**: Ensure that the data used in these models or experiments is accurate, consistent, and verifiable.

- **Transparency and Disclosure**: Maintain transparency about the methodologies and data (such as limiting exposures to viewable impressions) used, assumptions made, test duration, pre-campaign hold-out periods, and potential limitations of your incrementality measurement approach.

- **Adherence to MRC Standards**: Align your practices with MRC Standards for a robust and accurate incrementality measurement process.

4.1 METHODOLOGIES TO MEASURE INCREMENTALITY

- **Experimental design and non-experimental approaches** form the foundation of any incrementality test. A proper design typically involves creating a test group that receives a specific treatment (like seeing an ad) and a control group that does not. The impact of the treatment is then estimated by comparing outcomes between the two groups.

- **MRC Outcomes and Data Quality Standards** (link) emphasize the importance of randomized controlled trials (RCTs) in experimental design and non-experimental approaches. When feasible, marketers are recommended to use RCTs to ensure the control and test groups are comparable,
Randomized controlled trials (RCTs)

- Data modeling in RCTs typically involves statistical techniques to compare the two groups and understand the effectiveness of the intervention.

◊ Descriptive Statistics: Begin with a basic comparison of means between the control and treatment groups. If the marketing campaign has had an effect, the treatment group should exhibit a more desirable mean value for the chosen KPI (e.g., more sales or click-through rates; lower cost per purchase).

◊ Inferential Statistics: Use statistical tests like t-tests or an analysis of covariance to ascertain if the differences in the means are statistically significant.

◊ Regression Analysis: More complex statistical modeling such as regression analysis may be employed. This technique allows for controlling additional variables that might influence the outcome, providing a more nuanced understanding of the campaign’s impact.

- MRC Standards highly recommends using RCTs, where individuals or units are randomly assigned to a test group or a control group. This random assignment helps ensure that the two groups are statistically identical in all respects except for the treatment, which helps minimize bias and confounding variables. Further, marketers may wish to employ one-to-one matching between test and control consumers/households (not just groups), with matching done based upon like factors to most effectively isolate the impact of ad exposure on outcomes.

- When using an RCT to measure incremental lift, it’s important to ensure that randomization between the treatment and control groups is not conflated with randomization between the intention-to-treat and control groups. Depending on the type of RCT implementation employed, it may be necessary to utilize intent-to-treat (ITT) analysis methods if users in the test group only have an “opportunity” to be exposed to an ad campaign or leverage approaches centered around other implementations such as Ghost Ads or PSA methods.

- The best way to avoid this methodological error is to ensure that any RCT for advertising incrementality uses the same targeting and bidding logic that determines who receives treatment to also determine who is placed in the control group. Non-RCT approaches, such as synthetic control methods can be prone to this error if it does not explicitly account for differences between intention-to-treat and treatment groups, while ghost ad or traditional A/B tests can usually be configured to apply the same targeting and bidding logic to determine the populations that are measured for treatment and control.
Example: If a retailer’s audience of two million shoppers is randomly split into two groups of one million shoppers for the purpose of an RCT, the group that is being targeted for treatment is really an intention-to-treat group, since there’s no guarantee that all one million of those shoppers will ultimately be exposed to the treatment (the ad) over the course of the experiment.

Synthetic controls
The goal of any attribution is to identify the delta between the (sales) behavior of the exposed group:

Had they been exposed versus had they not been exposed to the campaign. This is what we commonly refer to as counterfactual. However, it is impossible to measure this (i.e., a person cannot be concurrently exposed and not exposed to the campaign). Therefore, all attribution measurements attempt to capture this through a look-alike test and control matching technique. Randomized control trials (part of hold-out experiments), forensic or synthetic matching, and regression-based models are common approaches used in attribution measurement. Forensic approaches are particularly relevant when:

- Holdouts are not always available or appropriate (see: Understanding and misunderstanding randomized controlled trials)
- Brands and retailers are reluctant to leave money on the table by not advertising to the target group

In such cases, forensic approaches work well provided the matching variables account for all confounding variables that can increase bias or variance and take away from measuring average treatment effects accurately. In this case, confounding variables are those that affect the independent variable being studied (sales, market share, clicks, opens, etc). Confounding variables can differ for different use cases but evidence that the measurement has controlled for it can be validated through AA, BB testing prior to AB testing (here A = test group and B = control group).

- The retail media measurement organization can leverage first-party data to create the synthetic control group referenced above. Once this group has been created, the difference in sales pre and post campaign for each group can be used to calculate lift.

- A key feature of a synthetic control approach is the need to ensure a high level of similarity between test (exposed to media) and control (not exposed to media). A retail media measurement organization is recommended to consider using factors like purchase behavior (for the brand featured in the campaign, for the category, and for the retailer overall) as well as digital behavior profile (site pages visited, actions taken onsite, in-app, or on the web, etc.) to accurately match these groups together.
• Employ statistical methods, such as propensity score matching, to ensure the control group’s purchase and digital behavior closely mirrors that of the test group. This method helps quantitatively validate the similarity, focusing on pre-campaign interaction with the brand and overall buying patterns at the retailer.

• Establish strict criteria to prevent selection bias, ensuring the control group is representative of the broader customer base. This includes monitoring for any systematic differences in unobserved characteristics between the test and control groups, particularly regarding their interactions with the specific brand before the campaign.

• Synthetic control is distinct from synthetic data. A synthetic control uses existing data (i.e., the purchase behavior of consumers not exposed to media), whereas synthetic data involves the artificial generation of data.

Matched-market tests in retail media

It is recommended to employ a strategy that analyzes linear attributes or adopts a difference-in-difference approach. This strategy involves focusing on directly measurable factors and comparing the evolution of these factors over time between two distinct groups. To ensure accuracy and avoid biases in the analysis, it is crucial to exclude stores that are statistical outliers. The approach emphasizes the importance of comparing attributes that are consistent and comparable across different stores. Additionally, the use of time-based regression analysis is advocated in this methodology. This involves analyzing sales data across two geographic groups, allowing for the modeling and prediction of sales trends in one group based on the observed data from the other group. This approach ensures a more accurate and reliable understanding of sales patterns in retail media.

Unlike attribution which uses household or person-level matching to successfully isolate incremental sales calculations, matched markets which take the form of in-store attribution studies or market-level studies require rigor beyond just store or market matching. This is due to the effect of multiple marketing activities within a store that can impact incremental sales calculation. Therefore, in addition to matching, methodological rigor to isolate the incremental sales effect of the marketing variable under consideration is important. Common approaches include Analysis of Covariance (ANCOVA), regression and other multivariate analysis techniques in helping achieve desired accuracy in attribution measurement.

• Example: Store A (or Market A) is matched to Store B (or Market B) based on store type, assortment, annual sales, media support, etc. However, there may be artifacts that are outside the ability of matching alone (such as price reductions, display changes, digital coupons, retail trade area demo differences, etc.). It would be impractical or impossible to fully match stores or markets based on all these variables. For those reasons, matched market tests must institute matching and modeling rigor to help isolate the incremental sales impact of the marketing variable under consideration for the test.
When implementing matched-market tests, it’s essential to abide by the MRC guidelines for data quality and methodological transparency.

Data modeling/statistical modeling in matched-market tests:

- **Descriptive Statistics:** Start with a basic comparison of the key performance indicators (e.g., sales, website visits, etc.) between the test and control markets. This can provide an initial understanding of the differences between the two markets after the campaign has been implemented. According to the MRC, make sure to report the methods of data collection and the process used for calculating these KPIs.

- **Inferential Statistics:** Use statistical tests, like the t-test or the Mann-Whitney U test, to assess if the differences between the test and control market are statistically significant. This provides quantitative evidence to support the effectiveness of the campaign. Under MRC Standards, the choice of these tests and their rationale should be clearly disclosed, and their assumptions and limitations should be acknowledged.

- **Time Series Analysis:** Given that matched-market tests often span across time, it may be appropriate to use time series analysis. This type of analysis accounts for trends, seasonality, and other temporal structures in the data, which could affect the outcome. The MRC emphasizes the need for transparency in such complex statistical models. Retail media measurement organizations are recommended to explain how these analyses are conducted and their assumptions.

Across all statistical modeling, it’s important to perform validation and accuracy checks as recommended by the MRC. A third-party audit can be helpful in this regard to ensure the integrity and reliability of the tests.

By adhering to these MRC standards, retail media organizations can conduct robust matched-market tests that provide reliable insights into the incrementality of their campaigns. This enhances the credibility of the measurement process and builds trust with advertisers and users.

Machine learning models

- Incremental lift studies measure the increase (or “lift”) in a specific outcome metric caused by an ad or a campaign. This method can directly quantify the immediate impact of advertising efforts.

 ◊ **Campaign-Level Incrementality:** The MRC Standards recommend lift studies as a powerful tool for measuring short-term incrementality, especially when direct causality between an ad campaign and the outcome is the main interest.
Example: An established soda brand aims to increase household penetration through a targeted ad campaign on a retailer’s online platform. In this case, a lift study would compare the household penetration rate of this soda brand among customers who were exposed to the ad (test group) with those who weren’t (control group). The analysis would focus on differences in household penetration rates, possibly also looking at sales, units, and visits to determine the lift or incremental increase in household penetration attributable to the ad campaign.

◊ The design and implementation of lift studies require careful consideration to minimize bias and account for potential confounding factors. By following MRC Standards, advertisers can ensure they’re conducting robust and reliable incrementality tests that yield actionable insights.

◊ In incremental lift studies, the matching strategy between test and control groups should be carefully selected based on the specific context and objectives of the study. One-to-one matching, where each individual or household in the test group is matched with a counterpart in the control group based on similar attributes like geography and behavior, is often considered a best practice in certain scenarios. This method is particularly effective in isolating the impact of ad exposure or clicks, as it closely aligns the characteristics of the test and control groups, thereby minimizing confounding variables and enhancing the accuracy of causal inference.

◊ However, there are scenarios where alternative matching ratios might be more appropriate:

• In Randomized Controlled Trials (RCTs) with varying group sizes: For example, if the treatment group is significantly larger than the control group (e.g., 800 users vs. 200 users), a 4:1 matching ratio might be more suitable to maintain balance and reduce bias.

• When the treatment group is a small fraction of the total addressable audience: In cases like a 5% treatment group in a geo-randomized experiment, employing a broader section of the unreached audience with a 1:19 matching ratio can enhance the precision of the estimates.

• In hybrid approaches combining uplift modeling with RCTs: Different scenarios, such as when a portion of the audience is withheld due to budget pacing, might require adjusting the matching ratio (e.g., 1:2) to improve the precision of the incrementality measurement.
While one-to-one matching is advantageous for its precision in matching and clarity in causal inference, it’s essential to adapt the matching strategy to the specific study design and objectives. Marketers should also be mindful of potential biases, particularly unobserved variable bias, which can arise when matching is based solely on observed features.

Uplift modeling generally involves building a predictive model, but it is more complex due to its nature of predicting the differential effect of a treatment and can be less reliable when based on observational signals rather than when based on RCTs. Here are some techniques used to be considered (along with other possible approaches):

- **Two-Model Approach:** One straightforward method is to build two separate predictive models—one for the treated group and one for the control group—and then calculate the difference in predictions. While simple, this approach may not always yield accurate results as it doesn’t explicitly model the differential effect. It’s important to follow the MRC Standards for transparency and full disclosure in documenting the model-building process, assumptions, and data inputs used.

- **Single Uplift Model:** More advanced techniques build a single uplift model that predicts the differential effect directly. Various algorithms can be used here, such as decision trees, random forests, or gradient boosting, but these need to be modified to account for the uplift objective. MRC Standards emphasize the importance of a robust methodology for such complex models. This involves clearly documenting the algorithm modifications and justifying their use in the context of uplift modeling.

- **Advanced Machine Learning Techniques:** Advanced machine learning techniques have been adapted for uplift modeling, including uplift trees and uplift random forests. These algorithms directly maximize the difference between the treated and control groups, providing a more accurate estimate of the uplift. MRC Standards mandate that for advanced methodologies, a higher degree of transparency and understanding of the models is required. It is essential to clearly explain these methods, their assumptions, and validation results to stakeholders.

Uplift modeling requires various types of data, often sourced from experiments or observational studies:

- **Treatment Data:** This includes deterministic data about who was treated (exposed to the marketing campaign) and who was not. To be considered part of the treatment group, exposure to a viewable impression is required by MRC. If this is not possible to limit to viewable impressions, it should be disclosed per MRC Outcomes and Data Quality Standards.
Outcome Data: This also involves deterministic data about the behavior or response of individuals, such as whether they made a purchase, clicked on an ad, etc.

Covariates: These are variables that might influence the outcome or the treatment effect. This can include demographic data, past purchase history, engagement with previous campaigns, and more.

4.2 DATA TYPES FOR MEASURING INCREMENTALITY

In measuring incrementality, the type of data you leverage significantly impacts your results. For retail media organizations, aligning with MRC Standards, it’s advisable to consider deterministic, probabilistic, and synthetic data. Ideally, there is a direct connection between the user that was exposed to media and the user that took an action (clicked, added to cart, purchased item in-store/online/BOPIS). If the ability to connect the impression to the outcome is not possible or has limitations, retailers must disclose the assumptions, techniques, and extrapolation methodologies used to tie media to outcomes.

- **Deterministic Data**: This involves leveraging precise data points directly connected to individual users, often collected through mechanisms such as login data, user IDs, or loyalty program participation. It’s highly accurate, making it ideal for measuring incrementality, especially in single-channel assessments where you’re isolating the impacts of specific user actions.

 Recommendation: As a retail media measurement organization, it is recommended that deterministic data forms the baseline for incrementality analysis. Retail media measurement organizations are encouraged to ensure that they’re gathering and leveraging all the relevant and appropriate (supporting advertiser goals) deterministic data they have access to, while respecting user privacy and adhering to relevant data protection regulations.

- **Probabilistic Data**: Probabilistic data involves using statistical techniques to predict user behavior based on available data points. This becomes useful in multi-platform incrementality where it may not be feasible to track every user action across different platforms deterministically.

 Recommendation: Leverage probabilistic data when deterministic data is insufficient, such as in a multi-platform scenario. Use statistical modeling to establish a link between various touchpoints and user actions. Bear in mind the MRC Standards that stress the importance of transparent and verifiable methods when dealing with probabilistic data.

Each data type carries its strengths and limitations, and the choice between them depends on the specific context and requirements of the incrementality test. A combination of data types usually yields the most accurate and robust results. Aligning with MRC Standards ensures you maintain data integrity and transparency.
4.3 CONSIDERATION FOR DATA SOURCES

- **Media Spend Data:** This is deterministic data that includes how much is spent on each media channel during a specific time period. This data is typically obtained from impression or click tracking, demand-side platforms (DSPs), or other sources.

 ◊ Recommendation: When dealing with media spend data, it’s crucial to keep an accurate and reliable record as per the MRC Standards. Ensure transparency about how spending is recorded and categorized across different channels and maintain a consistent approach across all campaigns and time periods.

- **Sales Data:** This data, also deterministic, represents the KPIs that the marketing efforts aim to influence. Sales data is usually sourced from internal sales reports or external market research agencies.

 ◊ Recommendation: As per MRC Standards, make sure that sales data is accurate, reliable, and consistent across different time periods and regions. Data collection and reporting procedures should be transparent and verifiable.

- **Competitor Data:** Information on competitor activities and spending can provide a fuller picture of market dynamics and help control for external influences. This is usually obtained from market research reports or ad intelligence tools.

 ◊ Recommendation: The MRC recommends ensuring the reliability of third-party data. Make sure that any external data source used is credible, accurate, and abides by the data quality standards outlined by the MRC.

- **Market Conditions:** Other market conditions, such as economic indicators, seasonality, or even weather data, can affect sales and may be included in the model if deemed relevant to accurately isolate the impact of media spending. These data are usually sourced from public databases or third-party providers.

 ◊ Recommendation: When incorporating such external data, follow the MRC Standards on using data from third-party sources. Verify the accuracy and reliability of the data, and ensure transparency about how it’s used within the model.

- **Consumer Attitudinal Data:** Probabilistic data like customer sentiment, brand awareness, and other behavioral data can be incorporated to understand softer measures of marketing effectiveness. These can be sourced from surveys or social listening tools.
◊ Recommendation: The MRC emphasizes transparency when using probabilistic data. Make sure the methodologies for gathering and interpreting this data are transparent and that the potential limitations and uncertainties are acknowledged.

- Digital Data: Data from digital platforms like click-through rates, web analytics data, etc., can provide additional granular insights. These are typically sourced from digital analytics platforms.

◊ Recommendation: The MRC Standards recommend maintaining transparency and accuracy in the collection and use of digital data. Follow IAB and MRC Guidelines and Standards on digital measurement, including viewability, invalid traffic detection, and other metrics.

Limitations

The primary focus of this incrementality chapter is on measuring the direct incremental impact within a retailer’s ecosystem, rather than considering the broader “halo effect” it may have on the rest of the market.

The term “halo effect” here refers to the indirect impact that extends beyond immediate transactions occurring on the respective retailer or its ecommerce site. These effects can include increased brand awareness, consumer loyalty, and even increased sales or shifts in purchasing behaviors across other retailers or channels. For instance, a CPG campaign activated by Retailer A’s retail media platform drives X amount of sales lift for retailer B stores.

While analyzing the direct impact is crucial for understanding the media effectiveness and performance within the retailer’s ecosystem, it may not provide a comprehensive view of how media activities influence the overall market dynamics and consumer behavior beyond the retailer’s scope.

4.4 TRANSPARENCY AND EXPLANATION OF METHODOLOGY

Regardless of the type of data used (deterministic, probabilistic, synthetic, or others), the MRC Standards emphasize the importance of providing transparency around your methodologies. You should clearly disclose the methodologies you’re using, their underlying assumptions, and any limitations.

For deterministic data, this means explaining how you’re gathering data and tying it to individual users or transactions. For probabilistic and synthetic data, the methodologies for data generation and statistical modeling are recommended to be disclosed and explained. The MRC also encourages transparency around any potential biases, errors, or uncertainties in the data or the modeling.
• Accuracy and Validation: The MRC insists on accuracy in data reporting and recommends periodic validation. For deterministic data, validation can involve checks for data completeness, consistency, and reliability. For probabilistic and synthetic data, use well-established statistical methods and validate your models with actual data whenever possible.

◊ Additionally, regardless of data type, the MRC encourages the use of third-party audits to verify the validity and accuracy of your methodologies.

• Data Management: The MRC Standards extend to data management as well. Regardless of the type of data, they underscore that raw data should be retained for a reasonable period to support inquiries or audits. Additionally, data processing and transformation procedures should be documented and available for review.

• Privacy: For all types of data, MRC Standards underline that user privacy must be respected. Any data modeling should comply with local regulations and industry best practices for user privacy. If data is derived from user behaviors or linked to individual users (as in deterministic or probabilistic data), it should be consistent with applicable regulations and appropriate measures should be taken to protect user identities.

• Statistical and sample-based requirements:

◊ Accurate and reliable data is essential for any incrementality test.

◊ MRC Standards stress the significance of data quality and validation. To ensure accuracy, completeness, and consistency, retail media platforms are recommended to implement mechanisms for data verification. Data sources are recommended to be transparent and verifiable, and data processing procedures should maintain integrity and try constantly to reduce the effects of bias, distortion, and human error in all phases of its activities.

◊ Third-Party Audits: MRC Standards recommend third-party audits to validate incrementality measurements. This provides an additional layer of trust, ensuring that the incrementality tests are robust, reliable, and seek to minimize any potential biases or inaccuracies.

◊ Additional requirements:

• Disclosure of any biases known to the measurement organization which may exert a significant effect on the findings shown in the report, as well as quality controls to address and reduce inherent biases

• Disclosures of sample bases including relative sample sizes
• Disclosure and quantification of sampling and non-sampling error

• Disclosure of error (sampling and non-sampling) as well as guidance for use of error estimates such as confidence intervals

• Disclosure of assumptions including prior knowledge and hypothesis design

By adhering to these MRC Standards, retail media organizations can ensure accurate, and reliable use of different types of data in measuring incrementality. This not only maintains the integrity of the measurement process but also fosters trust with users and advertisers.
CHAPTER 5: REPORTING AND TRANSPARENCY

5.1 CLEAR AND TRANSPARENT REPORTING REQUIREMENTS

Transparent reporting

Transparency is paramount in measurement practices. Providers should clearly outline their methodologies and partners involved (where applicable), disclose limitations or biases known to the measurement organization that may exert a significant effect on the findings shown in the report, and define key metrics, if different than standard. They must also clarify how any non-viewable and/or non-measured impressions are reported or influence outcomes measures.

Granular reporting

Granular reporting refers to providing detailed and specific information about ad performance and viewability metrics, broken down by various dimensions. Granular reporting allows advertisers and publishers to better understand ad performance, identify trends, and optimize campaigns. There are no strict minimum requirements for granular reporting; however, some common dimensions and best practices include:

- Device Type: Break down viewability metrics by device types, such as desktop, mobile, and tablet. This can help identify which devices yield higher viewability rates and optimize ad placements accordingly.
- Ad Format and Creative Type: Provide viewability data for different ad formats, such as display ads, video ads, native ads, and rich media ads as well as creative types. Understanding the performance of various ad formats can help advertisers make informed decisions about creative strategies and ad placements.
- Ad Size: Break down viewability metrics by ad size, such as standard IAB sizes (e.g., 300x250, 728x90, etc.) and custom sizes. This can help identify which ad sizes perform better in terms of viewability and optimize ad design accordingly.
- Ad Placement: Report viewability rates for individual ad placements, such as Category Pages, Search query results, Product Detail Pages, Homepage, etc. This information can help advertisers and publishers make informed decisions about ad placement strategies.
- Domain or App: Break down viewability metrics by specific domains, websites, or apps where ads are served. This can help identify high-performing or underperforming publishers, allowing advertisers to allocate budgets more effectively.
- Time of Day and Day of Week: Analyze viewability rates based on the time of day and day of the week as well as time segments by week, month, or quarter where applicable. Identifying
trends in viewability across different times can help optimize ad scheduling and improve overall campaign performance.

- Geographic Location: Provide viewability metrics by geographic regions, such as countries, states, or cities. This information can help advertisers identify regional trends and optimize ad targeting.

- Demographics and Audience Segments: Break down viewability rates by user demographics (e.g., age, gender) and audience segments based on interests, behaviors, or other targeting criteria. This can help advertisers understand how well their ads resonate with specific audience segments and optimize targeting strategies.

- Align on Attribution Methodology: Decide whether you want to use last touch, multi-touch, or other weighted models.

- Sales Differentiation: Reporting should differentiate online sales, in-store sales, and total sales (the sum of online and in-store), and it should provide transparency into which types of sales are classified as online vs. in-store (specifically, sales that are transacted online but picked up in-store).

- Inventory Accountability: Retailers must be transparent with inventory, properties, or the affiliate family of domains that are included in onsite or owned vs offsite media and operated activations or placements in advance of advertiser investment.

While there are no strict minimum requirements for granular reporting, providing detailed and specific information across these dimensions can help advertisers and publishers make data-driven decisions, optimize campaigns, and improve overall ad performance. To get the most out of granular reporting, it’s essential to choose a measurement solution that offers comprehensive reporting capabilities, which could include viewability and adheres to industry standards and best practices.

5.2 REPORTING REQUIREMENTS

In addition to clicks, reporting should include other click-related metrics, such as resolved clicks, Post-click activity, and conversions whenever feasible per MRC Outcomes and Data Quality Standards [link]. User confirmation techniques, such as confirmed clicks, are highly recommended within MRCs Outcomes and Data Quality Standards to validate and filter click transactions.

User activity that occurs outside of clickable content is not considered a valid advertising click transaction. It is important to establish separate click qualifiers for desktop and mobile environments, as
mobile measurements may be more prone to navigational errors or incidental clicks due to smaller screens and different user interaction patterns.

By focusing on viewable impressions measurement and reporting, retail media measurement organizations can provide advertisers with accurate and actionable insights into their campaign performance. This, in turn, enables advertisers to make informed decisions about ad placements, creatives, and targeting strategies, ultimately leading to more effective and successful campaigns.

Retailers may implement viewability tracking technologies on their own sites for auditing by the MRC or other appropriate auditing organizations.

1. Implement Tracking Technologies: Integrate the chosen viewability measurement solution into your ad serving platform or content management system. This may involve adding tracking pixels, JavaScript tags, or other code snippets provided by the vendor to your ads or web pages. Follow the vendor’s documentation and guidelines for proper implementation.

2. Configure Reporting: Set up reporting in the viewability measurement platform according to your specific needs. This may involve creating custom reports, dashboards, or alerts to monitor viewability metrics in real time or at regular intervals.

3. Validate Data: Regularly validate viewability data to ensure accuracy and consistency. This may involve comparing viewability rates across different measurement vendors, conducting periodic audits, or reviewing discrepancies in reporting.

4. Share Insights with Stakeholders: Communicate viewability metrics and insights to relevant stakeholders, such as advertisers, publishers, and internal teams. This ensures that everyone has access to the information needed to optimize campaigns and make data-driven decisions.

Non-viewable and non-measured impressions are ad impressions that do not meet the viewability criteria (e.g., not visible for a sufficient duration or percentage of pixels) or are not captured by the measurement methodologies. Disclosing information about non-viewable and non-measured impressions in reporting helps advertisers and publishers understand their impact on campaign performance and overall metrics. Key aspects of non-viewable and non-measured impressions include:

- Methods for Handling and Reporting Non-Viewable Impressions: These may involve separating non-viewable impressions from viewable ones in the reporting or applying adjustments or corrections to account for non-viewable impressions.
• Methods for Handling and Reporting Non-Measured Impressions: These may involve estimating non-measured impressions based on known or assumed factors, such as historical data or industry benchmarks, or disclosing limitations in the measurement methodologies that may result in non-measured impressions.

• Implications of Non-Viewable and Non-Measured Impressions: Understanding the impact of non-viewable and non-measured impressions can help advertisers and publishers make adjustments to their campaigns or measurement approaches to improve viewability and overall performance.

5.3 RETAIL MEDIA MEASUREMENT METRICS: DEFINITION AND METHODOLOGY
The metrics outlined in this section are not mandatory for reporting but offer additional insights if chosen to be included. If these metrics are provided, this section offers comprehensive guidelines to standardize their reporting for a transparent and coherent understanding across all stakeholders. These metrics aim to clarify various aspects of retail media performance that go beyond the core requirements. By adhering to these guidelines when reporting on these optional metrics, brands, agencies, and retailers can foster a more transparent, accurate, and mutually beneficial measurement landscape.

<table>
<thead>
<tr>
<th>METRIC/KPI</th>
<th>DEFINITION</th>
<th>METHODOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category Share Growth</td>
<td>Advertised brand growth against overall category growth during a media campaign. This helps determine if the campaign increases market share.</td>
<td>Before and after analysis, while straightforward, lacks the ability to account for other factors that may influence the category share or growth beyond ad exposure. Only use this methodology to draw directional insights.</td>
</tr>
<tr>
<td>Category Change</td>
<td>Growth or decline of a retailer’s total sales (not only ad attributed sales) within a particular category or subcategory over time.</td>
<td>Change or shift in category sales /share is dependent on multiple factors, not just retail media investment; new category entrants, retailer recategorization of products, seasonality, supply chain constraints, market pressures, etc. Category dynamics are typically proprietary retailer data that is not widely distributed and may not be updated on a regular basis. However, in the instance where retailers are using category trends to justify increased retail media investment, the retailer should be responsible for reporting back on the category’s growth or decline (using % or bps) as well as the brand’s shift in category share (negative or positive) on an agreed upon cadence.</td>
</tr>
<tr>
<td>METRIC/KPI</td>
<td>DEFINITION</td>
<td>METHODOLOGY</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Attributable Direct Sales/ROAS/Conversions</td>
<td>Outcomes that can be attributed to a viewable ad based on MRC viewability standards, associated to specific SKU’s included within the creative or directly determined by the brand partner</td>
<td>Need to disclose if attribution is based on viewability or extrapolation</td>
</tr>
<tr>
<td>% of New Buyers</td>
<td>Percentage of buyers who are new to your brand based on a specific time frame who saw an ad to tie to a specific campaign to a correlation of a purchase.</td>
<td>Retailers must provide a methodology and transparency around if they are using a grading model based on time.</td>
</tr>
<tr>
<td>New-to-Brand / New-to-Category / Upsell / Cross-sell</td>
<td>New-to-brand defines a shopper who has not purchased any products from the specified brand within a defined time frame that needs to be disclosed by the retailer. New-to-category is a shopper who has not purchased any products from the specified category within a defined time frame that needs to be disclosed by the retailer. Upsell is a shopper who has previously purchased a product from the brand and is now purchasing a product within the same brand with a higher price point than the previously purchased brand product. This could also include a shopper who has previously purchased a product within the brand and is now purchasing multiple brand products at a higher price point. Reporting should be transparent on how the timeframe is defined. Cross-sell refers to a shopper who has previously purchased a product within a specified brand and who buys a different product within the specified brand. Price point is not a factor here.</td>
<td>Brands/agencies supplying the universal product code (UPC) should be permitted to participate in defining measured units and aligned with buyer objectives. Definitions are based on aligned and specified products and metrics should distinguish between featured UPCs and halo UPCs.</td>
</tr>
<tr>
<td>METRIC/KPI</td>
<td>DEFINITION</td>
<td>METHODOLOGY</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Repeat Customer / Purchase Frequency</td>
<td>Repeat customer is a shopper who buys the same product (not SKU, not brand) within a defined timeframe, but not within the same session. The defined timeframe needs to be included in the reporting methodology. Purchase frequency reporting should be transparent about the definition of the time frame reported.</td>
<td>Must provide the attribution window against which the purchase frequency is being measured.</td>
</tr>
<tr>
<td>Incrementality</td>
<td>Incrementality measures the true value created by any business strategy, determined by isolating and measuring related results, independent of other potential business factors. In other words, incrementality is the potential causal impact of marketing. Specifically, for retail media organizations, it represents the causal impact of marketing and is often linked to outcomes like sales or attributed to advertising campaigns or exposures. See chapter 4 for more detail.</td>
<td>Needs to provide details on incrementality on revenue, purchase frequency, basket size, or customer and whether it is a single channel. Also, when using synthetic control ads on the checkout or product display page retailers must ensure there is weighting on the source of product and consumer behavior.</td>
</tr>
<tr>
<td>Halo / Assisted Outcomes/ Influenced Outcomes</td>
<td>This metric looks at ad interactions that may have helped drive a sale even if those ad interactions don’t receive explicit attribution credit. This technique provides a more holistic view of the consumer journey and allows advertisers to better understand which types of ad interactions are contributing to driving sales.</td>
<td>This metric should match on brand and category for onsite retailers. Offsite retailers should collect the UPC and pull those in the methodology. Attributable/assisted halo sales/revenue/ROAS must provide transparency on methodology, SKUs that are being attributed, online and offline distinction, and deterministic vs. probabilistic outcomes as well as the attribution window and session period. Given that not all media exposures can be measured due to inconsistent user IDs, privacy regulations, and the nature of digital marketing, retailers should provide transparency on how they calculate the halo/assisted/influenced impact of a campaign, accounting for “unmeasurable” media.</td>
</tr>
<tr>
<td>METRIC/KPI</td>
<td>DEFINITION</td>
<td>METHODOLOGY</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Digital Shelf Share</td>
<td>Measures the number of SKU placements within a search results page or a category page of a brand relative to all other placements for the related category. This metric should disclose if it covers organic, paid, or both types of placements over a specified timeframe.</td>
<td></td>
</tr>
<tr>
<td>Conversion Volume</td>
<td></td>
<td>Online conversion volume must be based on orders per visit not units per event. If it’s based on units per event the retailer must provide transparency on the methodology and how it is differentiated. Omni conversion rate must be based on orders per impression or units per event. If it’s based on units per event the retailer must provide transparency on the methodology and how it is differentiated.</td>
</tr>
<tr>
<td>Online vs. Offline Distinction in Reporting</td>
<td></td>
<td>This metric should distinguish between online and offline sales attribution and provide online/digital outcomes or influenced outcomes and offline/omni outcomes or influenced outcomes.</td>
</tr>
</tbody>
</table>

5.4 DATA PRIVACY AND TRANSPARENCY

The MRC and IAB emphasize that privacy regulations are strict requirements that must be adhered to when designing outcomes measurement methodologies. The MRC Standards do not provide reasons or permission to deviate from privacy requirements. Outcomes measurers should comply with applicable privacy regulations, ensure proper permissions and clear privacy policies, and acknowledge that certain data fields may need to be excluded or anonymized to meet privacy requirements.

- **Adherence to Privacy Regulations**: Privacy regulations should not be viewed as barriers to overcome but as essential requirements. Measurement organizations must fully comply with applicable privacy regulations when designing outcomes measurement methodologies.

- **Privacy Policy Clarity**: Measurement organizations should clearly state in their privacy policies the reasons for collecting information and how it may be used and shared. Proper permissions and access rights should be obtained, and privacy policies should be easily accessible and understandable for users.
• Disclosure of Privacy Considerations: Any limitations or data restrictions resulting from privacy requirements should be disclosed to users of outcomes measurement. These disclosures should include information on “structured missingness” (material aspects of missing data concentrated in any one area) or biases related to privacy restrictions for specific device or browser types, audience segments, or media properties. Quantification of these impacts, where possible, should be provided in conjunction with the minimum standards set by the MRC.

• Mitigating Privacy Biases: Measurement organizations are encouraged to proactively research and address any biases or limitations resulting from privacy restrictions. This may involve indirect methods such as weighting, data adjustment, data enrichment, or other techniques. These efforts are recommended to be well-documented, empirically supported, and disclosed alongside any introduced errors or biases.

• Periodic Privacy Impact Assessment: It is crucial for measurement organizations to periodically assess the impact of privacy regulations and permissions on their methodologies. This assessment is recommended to include evaluating the effectiveness of privacy-enhancing techniques, revisiting parameters such as noise injection or differential privacy, and quantifying the impact of these measures on reported results.

• Transparent Reporting: Privacy-related parameters, such as restrictions on report requests or data granularity due to differential privacy, are recommended to be disclosed to measurement reporting end-users upfront. Efforts to enhance privacy, including the injection of “noise” or synthetic records, are also recommended to be clearly disclosed, accompanied by statistical techniques used to minimize bias and error. The effects of such measures on reported results should be quantified and provided in alignment with MRC minimum standards.

By implementing these recommendations, measurement organizations can ensure compliance with privacy regulations, maintain transparency with users, and enhance privacy protections in reported outcomes datasets. Additionally, continuous monitoring and evaluation of emerging privacy regulations will help ensure ongoing compliance and the ability to adapt measurement practices as necessary.
CHAPTER 6: IN-STORE DIGITAL PLACE-BASED (DPB) ENVIRONMENTS MEASUREMENT

Per the MRC Digital Place-Based Audience Measurement Standards [link], audiences for DPB environments are in the context of exposures per time unit. The audience is the number of individuals counted as present in a specific venue zone with measured presence in the exposure zone with dwell time for a digital placed-based screen within the venue while a viewability condition exists and who viewed (as a defined herein) that content. The entire venue is considered to be within the audibility zone, unless noted otherwise by the retailer. Retail media measurement of in-store activity should adhere to the MRC Digital Place-Based Audience Measurement Standards where applicable.

6.1 IN-STORE ZONES

Brick-and-mortar polygons are divided into sub-polygons or zones, to standardize the named areas as contextual and informative to the buyer for audience targeting. A zone may be department specific or a designation or for a specified function (i.e., entrance versus endcap or checkout versus shelf). The taxonomy for zones includes a broader naming convention to be consistent regardless of the type of retailer. Verticalized nomenclature is specifically designed to reflect any unique or seasonal zones. Retailers must identify the areas relative to their own store layout along with solutions (i.e., screen size and format). Zones will be used by retailers to differentiate the contextual exposure to in-store shoppers. An example of zone taxonomy may be as follows:

<table>
<thead>
<tr>
<th>ZONES TAXONOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Agnostic</td>
</tr>
<tr>
<td>Entrance</td>
</tr>
<tr>
<td>Checkout</td>
</tr>
<tr>
<td>All of Store</td>
</tr>
<tr>
<td>End cap</td>
</tr>
</tbody>
</table>
Venue overlay of zones

Retailers, and even stores within a given retailer’s footprint, will vary in physical format and layout. Zones must be overlayed to allow for exposure zone and dwell time to be applied through location-based foot traffic and screen-specific sensors. Traffic that passes through the zones will be calculated as the audience for that zone for the purposes of estimating the potential audience and/or delivery of actual impressions at the time of campaign delivery. Measurement providers must provide both the audiences of each individual zone and in aggregate for the venue. Please note that in-store displays may correspond to multiple zones which may be included in the measurement for these displays to the extent that exposure in these zones is supported and qualifies for inclusion in the audience for these displays as discussed further below.

![Diagram of a retail store layout with zones marked]

Zones and categories

Share of category may be the desired focus of a brand when considering how a specific zone will be targeted. Category-specific inventory availability within a zone will be provided at the discretion of the retailer.

6.2 VIEWABILITY

Viewable adjustment measures applied for digital place-based media are expected to conform to the requirement for digital in that it represents an opportunity-to-see, rather than confirmation that someone has seen the ad. Additional study may be warranted to determine whether the qualifying thresholds for digital (i.e. 50% of pixels for one second for display and two seconds for video) should be adjusted for digital place-based media, though until such study occurs the current digital viewability thresholds should be applied. To be counted in audience for program content both presence and view are required; viewability ensures that content is rendered in a manner that allows individuals to be exposed to, or view the content and/or ads. Further, reasonable thresholds for proximity and visibility of eligible exposure zones relative to the display position and size should be considered and applied to audience inclusion.
6.3 AUDIO
Audible measures to digital place-based media are expected to conform with a requirement that audio was played as opposed to the confirmation that an individual heard the ad. To be counted in audience for program content both presence and audible playout are required; audio levels and confidence recording ensure that content is played out in a manner that allows individuals to be exposed to, or hear the content and ads.

To qualify for inclusion in audience estimates, the dwell time, audible during the audience dwell time, and audio confidence condition must be met. Each of these components of the audience must be measured with sufficient quality and frequency, and with calculation rigor and transparency.

6.4 IN-STORE VALIDATION
In-store data validation is crucial for ensuring the accuracy and reliability of audience measurement data in digital place-based environments, such as in-store displays, digital signage, kiosks, and other in-store retail or digital media. It involves the use of various methodologies and techniques to confirm that the data collected in these environments is accurate and representative of the actual audience.

1. Conduct In-Store Audits: Regularly (at least annually) perform in-store audits to assess the accuracy of audience measurement data. These audits include, but are not limited to, checking the proper functioning of data collection devices, verifying the accuracy of audience counts, and assessing the overall data collection process.

2. Use Third-Party Validation Services: Engage third-party validation services to independently verify the accuracy of audience measurement data. These services can provide an unbiased assessment of data quality and help identify potential issues or discrepancies that may need to be addressed.

3. Leverage Real-Time Monitoring Systems: Implement real-time monitoring systems to continuously track and validate audience measurement data. These systems can help identify data anomalies or inconsistencies as they occur, enabling retail media organizations to promptly address potential issues and maintain the accuracy of their reported data.

4. Establish Data Validation Protocols: Create and follow standardized (such as following MRC or OAAA guidance) data validation protocols that outline the procedures for assessing and verifying the accuracy of audience measurement data in digital place-based (DPB) environments. These protocols should be consistently applied across all locations and campaigns to ensure a uniform approach to data validation.
5. Calibration and Maintenance of Data Collection Devices: Regularly calibrate and maintain data collection devices, such as sensors or cameras, to ensure they are functioning correctly and collecting accurate data. This includes periodically checking the devices for any defects, malfunctions, or inaccuracies and addressing these issues promptly. Additional data sets, such as store-level daily transaction counts can be reviewed and cross-referenced against data collected by sensors. A divergence in trends between the sensor data and the additional dataset(s) could be used to indicate the need to proactively recalibrate data collection devices.

6.5 GENERAL REQUIREMENTS FOR IN-STORE MEASUREMENT

Detailed disclosure is necessary so that users understand the nature of the measurement and any subsequent adjustments, and include quantification of the magnitude of the adjustments. Such methods should also be empirically supported and studied periodically, at least annually.

The methods used for measuring digital place-based media that should be disclosed and supported include:

1. Establishing venue traffic counts of appropriate quality. These counts are pivotal in estimating the potential unduplicated screen traffic or screen audience by virtue of presence in the venue. However, it is important to note that the screen traffic counts and unduplicated audience estimates are contingent on the methods used being comparable to those for the venue. When different methods are used (e.g., time of flight or optical sensors for screens versus other types for venue), direct comparisons may not be straightforward.

2. Establishing screen traffic counts of appropriate quality is essential. These counts determine the potential audience for each screen, focusing on individuals present within one or more designated zones where they have the opportunity for exposure to the screen. The key aspect here is the presence of a viewability condition within these zones. The counts reflect the number of individuals who had the opportunity to see and/or hear the source, thus representing those who could potentially view the screen. It’s important to note that these figures are dependent on individuals being within the effective range or zone of the screen, where they are likely to see or hear the content being displayed, under conditions that allow for clear viewability.

3. Establishing screen audience estimates of appropriate quality. These represent the number of individuals which were present with opportunity-to-see and/or hear the source while a viewability condition exists, and who viewed the screen.

4. Calculating average ad unit audience estimate of appropriate quality, where applicable. This represents a refinement of screen audience estimates to account for actual ad units viewed and/or heard and based on dwell time of the individuals.
GENERAL REPORTING PARAMETERS

To provide for more standardization in retail media organization measurement reporting, the following general reporting parameters are recommended:

Day: 12:00 midnight to 12:00 midnight

Time Zone: Full and prominent disclosure of the time zone used to produce the measurement report is required. In addition, all reported data should be made available to users based on Eastern Time Zone (U.S.), in addition to any others that measurement organizations may deem appropriate, to allow users to make comparisons across websites and properties from a common standard of time reference.

Week: Monday through Sunday

Week Parts: Monday-Friday, Monday-Sunday, Saturday, Sunday, Saturday-Sunday

Month: Three reporting methods are acceptable: 1) TV Broadcast month begins on the Monday of the week containing the first full weekend of the month; 2) four-week periods (13 per year), consistent with media planning for other media; or 3) a calendar month. For financial reporting purposes, a month is defined as a calendar month.

DISCLOSURE GUIDANCE

An organization’s methodology for accumulating measurements should be fully described and accessible to users of the data.

Specifically, the nature of measurements, the methods of sampling used (if applicable), data collection methods employed, data editing procedures or other types of data adjustment or projection, calculation explanations, reporting standards (if applicable), reliability of results (if applicable), and limitations of the data should be included in the disclosure.

Following are examples of the types of information that should be disclosed:

Nature of Measurements

- Name of Measurement Report
 - Type of Measurements Reported
 - Time Periods Included
 - Days Included
 - Basis for Measurement
 - Geographic Areas
 - Significant Sub-Groupings of Data
• Formats of Reported Data

• Special Promotions Impacting Measurements

• Nature of Auditing Applied and Directions for Access to Audit Report

• Sampling/Projections Used (if applicable)
 ◊ Explanation of Projections Methods

Data Collection Methods Employed
• Method of Data Collection
 ◊ Logging Method
 ◊ Logging Frequency
 ◊ Logging Capture Point

• Types of Data Collected
 ◊ Contents of Log Files

• Contacts With Users (if applicable)

• Research on Accuracy of Basic Data
 ◊ Latency Estimates

• Rate of Response (if applicable)

• Editing or Data Adjustment Procedures
 ◊ Checking Records for Completeness
 ◊ Consistency Checks
 ◊ Accuracy Checks
 ◊ Rules for Handling Inconsistencies
 ◊ Circumstances for Discarding Data
 ◊ Handling of Partial Data Records
 § Ascription Procedures
 ◊ Computation of Reported Results
 § Description of How Estimates are Calculated
 ◊ Illustrations Are Desirable
 § Weighting Techniques (if applicable)
 § Verification or Quality Control Checks in Data Processing Operations
 § Pre-Release Quality Controls
 § Reprocessing of Error Correction Rules
Reporting Standards
- Requirements for Inclusion in Reports, Based on Minimum Activity Levels

Reliability of Results
- Sampling Error (if applicable)

Limitations on Data Use
- Non Sampling Error
- Errors or Unusual Conditions Noted in Reporting Period
- Limitations of Measurement
REFERENCES

Minimum Standards for Media Rating Research

The MRC Minimum Standards for Media Rating Research provide the base set of assessment criteria and establish the foundation for all audits conducted of services engaged in the MRC accreditation process. The standards relate to:

• Ethical and operational standards that govern the quality and integrity of the entire process by which ratings are produced.

• Disclosure standards that specify the information about a rating service’s methodology including each specific survey that must be made available to users, the MRC, and its certified public accountant (CPA).

• Electronic delivery standards designed to ensure that the service maintains appropriate system controls and meets certain minimum reporting standards.

Ad Verification Guidelines

Brand Safety Ad Verification Guidelines – SUPPLEMENT to Conduct of Ad Verification: Enhanced Content Level Context & Brand Safety, Issued: Sep 2018
Conduct of Ad Verification Guidelines, Issued: Feb 2012

Invalid Traffic Detection (IVT Guidelines)

Measurement Guidelines

Audience Reach Measurement Guidelines, Issued: Aug 2013
Click Measurement Guidelines, Issued: May 2009
Intrinsic In-Game Advertising Measurement Guidelines, Last updated: Aug 2022, Issued: Sep 2009
Location-Based Advertising Measurement Guidelines, Issued: Mar 2017
Mobile Viewable Ad Impression Measurement Guidelines, Issued: Jun 2016
Multi-Channel Digital Video Data Capture, Accumulation and Procession Guidelines (Return Path Data), Issued: Jun 2012
OTT/CTV and SSAI Digital Video Measurement Guidelines, Issued: Aug 2021
Social Media Measurement Guidelines, Issued: Nov 2015
Measurement Standards

Cross-Media Measurement Standard—Phase I: Video, Issued: Sep 2019
Digital Audience-Based Measurement Standard, Issued: Dec 2017
Digital Audio Measurement Standards (includes Podcasting), Issued: Jan 2018
Digital Place-Based Advertising Measurement Standards, Issued: Mar 2017
Outcomes and Data Quality Standards, Issued: Sep 2022

Research Standards

Minimum Standards for Media Rating Research, Last updated: Dec 2011, Issued: Jan 1964

For the most recent MRC standards visit the Minimum Standards for Media Rating Research site.
BACKGROUND

About IAB
The Interactive Advertising Bureau (IAB) empowers the media and marketing industries to thrive in the
digital economy. Its membership comprises more than 700 leading media companies, brands, agencies,
and the technology firms responsible for selling, delivering, and optimizing digital ad marketing
campaigns. The trade group fields critical research on interactive advertising, while also educating
brands, agencies, and the wider business community on the importance of digital marketing. In
affiliation with the IAB Tech Lab, IAB develops technical standards and solutions. IAB is committed to
professional development and elevating the knowledge, skills, expertise, and diversity of the workforce
across the industry. Through the work of its public policy office in Washington, D.C., the trade association
advocates for its members and promotes the value of the interactive advertising industry to legislators
and policymakers. Founded in 1996, IAB is headquartered in New York City.

About the Media Rating Council
The Media Rating Council is a non-profit industry association established in 1963 comprised of leading
television, radio, print, and digital media companies, as well as advertisers, advertising agencies, and
trade associations, whose goal is to ensure measurement services that are valid, reliable and effective.
Measurement services desiring MRC accreditation are required to disclose to their customers all
methodological aspects of their service; comply with the MRC Minimum Standards for Media Rating
Research as well as other applicable industry measurement guidelines; and submit to MRC-designed
audits to authenticate and illuminate their procedures. In addition, the MRC membership actively
pursues research issues they consider priorities in an effort to improve the quality of research in the
marketplace. Additional information about MRC can be found at www.mediaratingcouncil.org.

CONTACT INFORMATION

IAB Measurement, Addressability & Data Center
data@iab.com

Jeffrey Bustos (Primary Lead)
Vice President, Measurement, Addressability,
& Data Center, IAB
jeffrey@iab.com

Angelina Eng
Vice President, Measurement, Addressability,
& Data Center, IAB
angelina@iab.com

Ron Pinelli (Primary MRC Lead)
Senior Vice President, Digital
Research and Standards, MRC
rpinelli@mediaratinccouncil.org

Laris Oliveri
Vice President, Director of
International Audits, MRC
loliveri@mediaratingcouncil.org