

Interactive Advertising Bureau

Mobile Rich-media Ad Interface
Definitions (MRAID) v.1.0

Final Release
October 20, 2011

http://www.iab.net/

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 2 of 50

Oct. 20, 2011

Table of Contents
Contributors .. 3
Acknowledgement .. 4
About MRAID .. 4
IAB Contact Information .. 4

Executive Summary ... 5
General SDK Requirements for Supporting MRAID ... 6

Technical Audience .. 6
Native Application Developer ... 6
SDK Developer ... 6
Ad Developer ... 7

Out of Scope .. 7
Standard Web Technologies .. 7
Ad Server Requirements .. 8
Requirements for Ad Rendering ... 8

Display of HTML Ads – Ad View Container ... 8
Requirements for Ad Developers ... 8

Display Control for Rich Media Ads – Ad Controller ... 8
Lifecycle Examples ... 9

Simple Ad Lifecycle Example ... 9
Rich Media Ad Lifecycle Example .. 9
MRAID Version 1 .. 10
Future Versions ... 11

Interface Requirements and Definitions .. 12
Identification ... 12

MRAID script reference .. 12
Initialization .. 13

ready event .. 13
getVersion method .. 14

Preloading and Initial Display ... 15
Event Handling .. 15

addEventListener method .. 15
removeEventListener method ... 16

Error Handling ... 16
error event ... 16

Controlling Ad Display .. 17
getState method, stateChange event ... 17
isViewable method, viewableChange event ... 18
expand method .. 19

Controlling expandProperties ... 20
getExpandProperties method ... 21
setExpandProperties method ... 21

Closing Expandable and Interstitial Ads ... 22

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 3 of 50

Oct. 20, 2011

close method .. 22
Opening an Embedded Browser ... 24

open method .. 24
Addendum 1 – Candidates for Future Versions .. 25

Resizing an Ad .. 26
Displaying an Ad ... 29
Controlling expandProperties ... 30
Offline Requests and Metrics .. 32
Access to Native Features .. 33
Working with the Device's Physical Characteristics ... 34
Special Media Assets ... 39
Working with Device Connectivity ... 39
Working with Native Applications ... 40
Handling Call-to-Action Events .. 44
Hyperlinks ... 44

Addendum 2 – Ad Examples and Code Samples ... 45

 Contributors

The IAB MRAID Working Group includes representatives from the following companies:

24/7 Real Media, Inc.
4INFO
AccuWeather.com
AdMarvel
AdMeld
Adobe Systems Inc.
CBS Interactive
Celtra
comScore
Crisp Media
Dow Jones & Company
FreeWheel
Goldspot Media
Google
IDG
ImServices Group
inMobi
Jumptap

Medialets
MediaMind
Microsoft Advertising
Mixpo
NBC Universal Digital
Media
Nexage
PointRoll
PricewaterhouseCoopers
Rhythm NewMedia
Sprout
TargetSpot
The New York Times Co.
The Weather Channel
Time Inc.
Turner Broadcasting
System, Inc.
Yahoo!, Inc.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 4 of 50

Oct. 20, 2011

Acknowledgement

The IAB acknowledges the contributors to the ORMMA.org API project, which provided a
starting point for this document. ORMMA.org is a group of industry thought leaders who have
worked together since Spring 2010 to develop and test a complete and versatile mobile rich
media ad API.

Adam Schuetz, AdMarvel
Dennis Doughty, Jumptap
Jon Badenell, The Weather Channel
Nathan Carver, Crisp Media
Neal Karasic, Jumptap

Philippe Laporte, Goldspot Media
Robert Hedin, The Weather Channel
Todd Pasternack, Pointroll
Wook Chung, Google
Xavier Facon, Crisp Media

About MRAID
The Interactive Advertising Bureau (“IAB”), its members and other significant contributors
joined together to create this document, a standard interface specification for mobile rich
media ads. The goal of the Mobile Rich-media Ad Interface Definition (MRAID) project is to
address known interoperability issues between publisher mobile applications, different ad
servers and different rich media platforms.

IAB Contact Information
Joe Laszlo, Deputy Director, IAB Mobile Marketing Center of Excellence, mobile@iab.net

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 5 of 50

Oct. 20, 2011

Executive Summary
As rich media display advertising in mobile applications and on the mobile web has become
more popular over the last several years, various innovative companies have accepted the
challenge of creating an ecosystem for mobile ad serving. Innovation in mobile rich media ad
serving has led to many exciting possibilities for content publishers and advertisers, but it has
also created inefficiencies that often delay and inhibit the optimal monetization of content.

Simplifying the process for designers of ad creatives significantly increases the likeliness that
agencies will leverage mobile into their media buys. Advertisers want to review compelling
creative, approve it and decide to buy a specific inventory of mobile media, regardless of
which device platform, application, or technology is used to display the media.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 6 of 50

Oct. 20, 2011

General SDK Requirements for Supporting MRAID
This section details the requirements on an in-app ad-serving SDK that is MRAID compatible.

It is expected that an implementation would be in two parts. The first part defines a native
container for rich media ads to display in apps and the second part defines a JavaScript
controller for ad creatives to interact with. The native container encapsulates an HTML and
JavaScript enabled Web browser view, such as iOS’s UIWebView, and the controller serves
as a bridge that can integrate HTML-based ads with the native capabilities. Actual
implementations may vary.

When planning, key design considerations are:

• Access to the device’s native features (orientation, location, acceleration, etc.)
• On and off-line Ad viewing and metrics
• Industry standard Ad development (HTML and JavaScript)
• Progressive complexity (simple things are simple, complex things are possible but

harder)

Techn ica l Au d ience
The specifications are technical by nature, but are not intended to limit innovation. This
document is intended for Publishers or SDK vendors and addresses the needs of the Ad
Designers.

Native Application Developer
There are no requirements in this specification for app developers. They should follow
the instructions provided by their SDK developer for integrating ads into their
application.

SDK Developer
SDK builders have a number of responsibilities outside this recommendation. (See “out-
of-scope.”) As mentioned, it is expected that the SDK developer will provide two
interfaces to implement these recommendations: a container for the native developer to
integrate via the SDK and a controller for the ad developer to use directly.

This document outlines the requirements of the controller needed by the ad developer.
It is the intention of the writers that these concepts can be managed with a facade
layer for existing SDKs.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 7 of 50

Oct. 20, 2011

Ad Developer
There are no creative requirements in this document for ad designers and developers
besides the use of web standards. Ad developers who use the methods in this
specification can provide consumers with a rich media experience across platforms
and publishers.

It is important for ad designers to recognize that calls to the native device must be
asynchronous by design. For most web developers, this is analogous to AJAX programming.

Ou t o f Scope
Each SDK provides unique features sets to developers. This document outlines a minimum set
of features for interoperability and does not define features that may also be part of an SDK
such as

• Retrieving the ad from Ad Server, Ad Network, or local resources
• Reporting
• IDE integrations
• Security / Privacy
• Internationalization
• Error reporting
• Logging
• Billing and payments
• Ad dimensions and ad behavior
• Downloading of assets to the local file system for caching or off-line use

Of course, the SDK developer must implement the ability to render web content in the area
intended for the ad unit. For most environments, this capability is already available as a web
view component although the developer may have to develop additional functions to support
these specifications.

It is the intent of the writers that SDK vendors are not limited to delivering only the features
outlined in the API. They should continue to innovate and present features that differentiate
them in the marketplace.

Standard Web Tech n o log ies
For interoperability, only web compatible languages should be used for markup and scripting
languages. This document assumes HTML/JavaScript/CSS. The ad designer should be able to
develop and test the ad unit in a web browser. If designers use tags, styles and functions which
are compatible with only one browser (such as CSS3 on WebKit), then the ad should be
targeted to compatible devices.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 8 of 50

Oct. 20, 2011

When newer web standards can provide consistency, ad designers are encouraged to use
them. This may include protocols like sms: and tel:, as well as some widely implemented
portions of the as-yet unfinished HTML5 specification. Designers need to be aware that in
these cases, the expected protocols and implementations may not be truly interoperable
across all devices and platforms.

Ad Ser v er R equ ir em en t s
The ad server used to traffic rich media ads should support HTML ads with JavaScript.

R equ ir em en t s fo r Ad R ender in g

Display of HTML Ads – Ad View Container
An MRAID-compatible SDK must display any HTML ad. Ad designers that are not concerned
with rich media or accessing native features can simply provide simple HTML for display in the
application.

The SDK should invoke an HTML with JavaScript rendering engine for rendering ads. In this
document, that engine will be called the "web viewer". As possible, the web viewer should
incorporate the capabilities of the device web browser. For example, iOS developers may use
UIWebView. A given App view can have one or more Ad View Containers that will all act
independently of one another.

R equ ir em en t s fo r Ad Dev e loper s

Display Control for Rich Media Ads – Ad Controller
Additional creative requirements will register to use the MRAID API on an as-needed basis.
This supports the concept of progressive complexity.

So, the ad designer is in control of the ad display, but uses the MRAID API when the ad needs
to communicate with the SDK, or, in future MRAID releases, the device’s native layer. The
internal interaction is hidden from both the Ad developer and the App developer.

An ad that does not utilize any device features does not need to use the MRAID API at all.
Some of the things an ad uses MRAID’s API for are:

• Capturing user actions for:
o Opening an embedded Web browser
o Expanding an ad that grows from a banner to a larger size
o Clicking within an Ad triggering an action
o Storing metrics when off-line for transmission when the device is back on-line

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 9 of 50

Oct. 20, 2011

• Moving or resizing the Container and Web View for:
o Modal take-over of the entire display
o Modal or modeless “fly-out” of the Ad from the original Container bounds

Future versions of MRAID will extend the capabilities of the API, to enable rich media ads to:

• Query the SDK for supported features, such as:
o Accelerometer
o Compass
o GPS
o Specific gestures
o Whether the device is currently on or off-line
o Etc.

• Register JavaScript Event Listener functions to be called by the Container for:
o Accelerometer readings
o Touch events
o Gestures
o Etc.

L ifecy cle Ex am ples

Simple Ad Lifecycle Example
In the simplest example, an application developer adds an MRAID-compatible View to their
application UI either programmatically or with an interface builder.

When the app developer wants their app to display an ad, they rely on the SDK to retrieve an
HTML ad. The View then displays the resulting HTML. If the ad does not make use of the
MRAID API, then it will behave as a normal HTML ad and any links will open in the device’s
default web browser. This fallback functionality allows fixed sized, non-interactive web
creatives to be used without modification.

Rich Media Ad Lifecycle Example
In a more complex example, the Ad Designer uses the JavaScript API to take communicate
with the native layer and interact with features of the device and OS. An initial ad displays first
as a small shim with a static background or a “Loading…” message.

The ad may use local assets if they are available or request that assets be downloaded and
executed locally.

As an example, when the user touches the ad, JavaScript uses the MRAID API to notify the app
(via the SDK) that the ad is expanding so that it can stop anything that the user will not be able

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 10 of 50

Oct. 20, 2011

to interact with. The SDK then resizes the web view to take up the entire screen of the device or
the full size of the expanded ad. The SDK reserves a space at the top right corner of the
expanded ad for an SDK-provided close control, and will either supply the close indicator or, if
the ad specifies, will allow the ad to supply the indicator in creative.

When the user is done with the expanded ad, they click a close button that causes the ad to
unregister the event listeners, resize the ad to its original size, display the ad’s banner state,
and notify the app that it can resume. If the device was off-line when the user interaction took
place, any metrics called are cached by the SDK until the device is on-line again, and then the
tracking calls are sent.

The case of an interstitial ad is very similar. The ad can use the MRAID API to query the SDK
as to whether it is visible onscreen or not, waiting until it is on before it takes other actions. As
with an expandable, the SDK reserves a space at the top right corner of the expanded ad for
an SDK-provided close control, and will either supply the close indicator or, if the ad specifies,
will allow the ad to supply the indicator in creative. When the user is done with the interstitial,
they can tap the close button, which in this case changes the ad’s state to “hidden,” unregisters
any event listeners, and notifies the app to resume.

MRAID Versions

The adoption of MRAID throughout the ad community is a high priority and essential for the
success of mobile rich media across platforms. For this reason, IAB will release the full feature
set of MRAID in versions. This will allow SDK vendors to meet the compliance standards of the
MRAID API in a consistent way and prevent possible fragmentation inherit in implementing
only a portion of the standard.

Version 1
The methods and events identified in this document provide a minimum level of requirements
for rich media ads, primarily to display HTML ads that can change size in a fixed container.

Although Version 1 addresses a minimum level of functionality, the standards of MRAID remain
high. In this and particularly in future versions of the API, the IAB focuses on

• High interoperability – ads developed to run in one MRAID container can run on
MRAID containers of multiple platforms and operating systems.

• Graceful degradation – ads developed to take advantage of all the MRAID
features also have the capacity to downgrade gracefully as needed. This will be
especially important as gaining access to device functionalities becomes part of
MRAID’s scope in the future.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 11 of 50

Oct. 20, 2011

• Progressive complexity – ad design using the API should be simple, adding
complexity only as necessary.

For examples of ads that can be developed using the MRAID Version 1 API, please see the
addendum.

Future Versions
Also in an addendum, this document outlines a number of features that are currently under
discussion by the IAB MRAID working group. The final specification and timing for inclusion in
a future version is subject to change. In general, the IAB intends for future versions of the
MRAID specification to be agile and flexible in order to meet the practical needs of the mobile
advertising industry.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 12 of 50

Oct. 20, 2011

Interface Requirements and Definitions
This page outlines all the methods and events that ad developers will have access to.

Methods

• addEventListener
• close
• expand
• getExpandProperties
• getPlacementType
• getState
• getVersion
• isViewable
• open
• removeEventListener
• setExpandProperties
• useCustomClose

Events

• error
• ready
• stateChange
• viewableChange

Iden t if ica t ion
It is required that ads identify themselves as being MRAID compliant. This is done by adding
an MRAID script reference at the top of the creative before any MRAID functions are
referenced in the creative delivered to an ad server. In other words, the MRAID identification
script reference must be discoverable as soon as possible by any MRAID-compliant container
or SDK.

MRAID script reference
The MRAID comment follows HTML Javascript syntax so that both fully formed web pages and
HTML fragments can be identified as MRAID ads.

<script src="mraid.js"></script>

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 13 of 50

Oct. 20, 2011

In it ia liza t ion
The Controller encapsulates and abstracts all interactions between the web layer and the
native layer and identifies the container as compatible with these specifications. Ad designers
must include the JavaScript identification reference for MRAID, but the actual JavaScript
libraries are supplied by the container, and it is the responsibility of the SDK to ensure they are
available to the ad in a timely fashion after the script reference is made.

The following summarizes step-by-step the actions that the ad and SDK take in the initial
loading of the ad and the injection of MRAID.

1. Ad identifies itself as MRAID as early as possible with MRAID script tag.
<script src="mraid.js"></script>

2. SDK/MRAID-compatible Container

a. Optionally detects the script call

b. Always provides the MRAID JavaScript bridge for MRAID ads

c. Provides HTML display space with an MRAID State = “loading”

3. Ad listens for “ready” event with mraid.addEventListener('ready')

4. SDK/Container

a. Completes loading ad into HTML display space

b. Finishes any additional initialization for the JavaScript bridge and native layers

c. Fires the MRAID “ready” event

d. Changes the MRAID state to “default”

5. Ad's "ready" event listener is triggered and ad continues to execute JavaScript

6. In some conditions, ad may need to see if the MRAID state was updated to "default"
before the listener could be registered. In this case, the ad should use mraid.getState()
and then continue to execute JavaScript on success.

ready event
The ready event triggers when the SDK is fully loaded, initialized, and ready for any calls from
the ad creative.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 14 of 50

Oct. 20, 2011

It is the responsibility of the MRAID-compliant SDK to prepare the API methods before the ad
creative is loaded. This prevents a condition where the ad cannot register to listen for the
ready event because the API methods are unavailable. While the SDK may load all of MRAID
at once, at a minimum the SDK must be prepared to support the getState and addEventListener
capabilities as early as possible in the ad loading process; otherwise there will be no way for
the ad to register for the ready event. In the event that the SDK may still need more time to
initialize settings or prepare additional features, ready should only fire when the SDK is
completely prepared for any MRAID request.

The ad should always attempt to wait for the ready event before executing any rich media
operations. Because of timing issues, such as the ready event firing before the ad has
registered to listen, ad designers should use the ready event in conjunction with the getState()
method.

Example

function showMyAd() {
 ...
}

if (mraid.getState() === 'loading') {
 mraid.addEventListener('ready', showMyAd);
} else {
 showMyAd();
}

“ready”
parameters:
• none
side effects:
• MRAID JavaScript library available to ad unit
return values:
• none
event triggered:
• none

getVersion method
The getVersion method allows the ad to confirm a basic feature set before display. This version
number must correspond with the MRAID version specification and not the vendor’s SDK
version.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 15 of 50

Oct. 20, 2011

getVersion() -> String
parameters:
• none
return values:
• String – the MRAID specification that this SDK is certified against. For the current

version of MRAID, getVersion() will return “1.0”

P r e load in g and In it ia l Disp lay
It is up to the ad developer to provide simple HTML, such as an tag, for the initial
display of their ad while other assets are loaded in the background. This HTML will be
displayed in the Container while JavaScript uses the Controller to request and invoke
additional capabilities. Ultimately, the initial HTML display may be completely replaced by a
rich media ad once all assets are ready, depending on the creative requirements.

Ev en t Hand lin g
Event handling is a key concept of this recommendation. Communicating between the web
layer and native layer is asynchronous by nature. Through event handling, the ad designer is
able to listen for particular actions and respond to those actions on an as-needed basis. These
specifications advocate broadcast-style events to support the broadest range of
features/flexibility with the greatest consistency.

The controller exposes these methods.

addEventListener method
Use this method to subscribe a specific handler method to a specific event. In this way, multiple
listeners can subscribe to a specific event, and a single listener can handle multiple events.
Additional listeners are part of the MRAID roadmap. For the current version, the events are:

value description
ready report initialize complete
error report error has occurred
stateChange report state changes
viewableChange report viewable changes

addEventListener(event, listener)
parameters:
• event – string, name of event to listen for
• listener – function, function name (or anonymous function) to execute

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 16 of 50

Oct. 20, 2011

return values:
• none
side effects:
• In future versions of MRAID, registering listeners for device features may power up

sensors in the device that will reduce battery life.

removeEventListener method
Use this method to unsubscribe a specific handler method from a specific event. Event listeners
should always be removed when they are no longer useful to avoid errors. If no listener
function is provided, then all functions listening to the event will be removed.

removeEventListener(event, listener)
parameters:
• event – string, name of event
• listener – function, function name (or anonymous function) to be removed
return values:
• none
events triggered:
• none

Er r o r Hand lin g
When an error in the SDK occurs, the "error" event is thrown with diagnostic information about
the event. Any number of listeners can monitor for errors of different types and respond as
needed.

error event
This event is thrown whenever an SDK error occurs. The event contains a description of the
error that occurred and, when appropriate, the name of the action that resulted in the error (in
the absence of an associated action, the action parameter is null). JavaScript errors remain the
full responsibility of the ad designer.

“error” -> function(message, action)
parameters:
• message: String, description of the type of error
• action: String, name of action that caused error
triggered by:
• anything that goes wrong

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 17 of 50

Oct. 20, 2011

Con t r o llin g Ad Disp lay
Besides the initial display, the ad developer may have a number of reasons to control the
display.

• An application may load views in the background to help with latency issues so that
an ad is requested, but not visible to the user.

• The ad may expand beyond the default size over the application content.
• The ad may return to the default size once user interaction is complete.

getState method, stateChange event
Each ad container (or Web View) has a state that is one of the following:

value description
loading the SDK is not yet ready for interactions with the Controller

default the initial position and size of the ad container as placed by the application and
SDK

expanded the ad container has expanded to cover the application content at the top of the
view hierarchy

hidden the ad container no longer displays the ad

The getState method returns the current state of the ad container, returning whether the ad
container is in its default, fixed position or is in an expanded, larger position.

The stateChange event fires when the state is changed programmatically by the ad or by the
environment. This event is thrown when the Ad View changes between default, expanded, and
hidden states as the result of an expand() or a close(). The SDK may also close an ad as the
result of a user or system action, such as resuming from background.

The effect on state from calling expand() and close() are defined in this table.

state expand() close()
loading no effect no effect
default state changed to “expanded” state changed to “hidden”
expanded no effect state changed to “default”
hidden no effect no effect

getState() -> String
parameters:
• none

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 18 of 50

Oct. 20, 2011

return values:
• String: "loading", "default", "expanded”, or “hidden”
related events:
• stateChange

“stateChange” -> function(state)
parameters:
• state - String, either "loading", "default", "expanded", or “hidden”
triggered by:
• expand, close, or the app

getPlacementType() method

For efficiency, ad designers sometimes flight a single piece of creative in both banner and
interstitial placements. So that the creative can be aware of its placement, and therefore
potentially behave differently, each ad container has a placement type determining whether
the ad is being displayed inline with content (i.e. a banner) or as an interstitial overlaid content
(e.g. during a content transition). The SDK returns the value of the placement to creative so
that creative can behave differently as necessary. The SDK does not determine whether a
banner is an expandable (the creative does) and thus does not return a separate type for
expandable.

value description
inline the ad placement is inline with content (i.e. a banner) in the display
interstitial the ad placement is over laid on top of content

getPlacementType() -> String

parameters:
• none
return values:
• String: "inline", "interstitial"
related events:
• none

isViewable method, viewableChange event
In addition to the state of the ad container, it is possible that the container is loaded off-screen
as part of an application's buffer to help provide a smooth user experience. This is especially
prevalent in apps that employ scrolling views or in ads that display interstitials, for example
between levels of a game.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 19 of 50

Oct. 20, 2011

The isViewable method returns whether the ad container is currently on or off the screen. The
viewableChange event fires when the ad moves from on-screen to off-screen and vice versa.

In any situation where an ad may be loaded offscreen, it is a good practice for the ad to
check on its viewable state and/or register for viewableChange before taking any action.

isViewable() -> boolean
parameters:
• none
return values:
• boolean - true: container is on-screen and viewable by the user; false: container is off-

screen and not viewable
related events:
• viewableChange

“viewableChange” -> function(boolean)
parameters:
• boolean - true: container is on-screen and viewable by the user; false: container is off-

screen and not viewable
triggered by:
• a change in the application view controller

expand method
The expand method will cause an existing Web View (for one-part creatives) or a new Web
View (for two-part creatives) to open at the highest z-order in the view hierarchy. The
expanded view can either contain a new HTML document if a URL is specified, or it can reuse
the same document that was in the default position. While an ad is in an expanded state, the
default position will generally be obscured or inaccessible to the viewer, so the default position
should take no action while the expanded state is available. Thus a complete implementation
allows for ad designers to use one-part ads (where the banner and panel are part of one
creative) and two-part ads (where the banner and panel are separate HTML creatives).

The expand method may change the size of the ad container, and will move state from
"default" to "expanded" and fire the stateChange event. Calling expand more than once is
permissible, but has no effect on state (which remains “expanded”).

An expanded view may cover all available screen area even though the ad creative may not
(e.g. via a transparent or opaque overlay), or it may cover only a partial screen area. Issues of
ad modality are left to the SDK and/or the app developer’s implementation of the SDK. At a
minimum, however, the SDK should prevent new ads from loading during the expand state so
that the user can complete any desired interactions with the ad creative without interruption.
Other application-specific difficulties such as poorly built apps with multiple window objects, or

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 20 of 50

Oct. 20, 2011

timers that change the content z-order, must be considered by SDK vendors when
implementing the expand method.

An expanded view must provide an end-user with the ability to close the expanded creative.
These requirements are discussed further in the description of closing expandable and
interstitial ads, below.

Placement of the expanded ad on screen, especially when the expanded view can be placed
in multiple locations, is left to the SDK and/or the app developer. For full-screen expands, all
MRAID compliant SDKs will grant the full device screen space and will position the ad so it is
fully visible. When the ad size is greater than the screen size, the SDK will center the ad
vertically and horizontally--i.e., position the ad such that the center of the ad (midpoint top-to-
bottom and midpoint left-to-right) is located at the center of the device screen. The SDK will
size the Webview to be identical to the screen size of the device, causing outlying areas to be
cropped.

When the expand method is called without the URL parameter, the current web view will be
reused, simplifying reporting and ad creation. The original creative is not reloaded and no
additional impressions are recorded. Implementing this definition allows for one-part creatives.

When the expand method is called with the URL parameter, a new web view will be used.
Implementing this definition allows for two-part creatives.

expand([URL])
parameters:
• URL (optional): The URL for the document to be displayed in a new overlay view. If

null, the body of the current ad will be used in the current webview.
return values:
• none
events triggered:

stateChange

Con t r o llin g ex pandP roper t ies
The expand properties object is intended to provide additional features to ad designers. In
MRAID v.1.0, expand properties that can be set by the ad designer are limited to the width
and height of the ad creative in pixels, and whether the creative is supplying its own close
indicator. The expandProperties are held in a JSON object that can be written and read by
the ad.

expandProperties object = {
 “width” : integer,

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 21 of 50

Oct. 20, 2011

 “height” : integer,
 “useCustomClose” : boolean,
 “isModal” : boolean (read only)
}

properties:
• width : integer – width of creative in pixels, default is full screen width
• height : integer – height of creative in pixels, default is full screen height. Note that

when getting the expand properties before setting them, the values for width and
height will reflect the actual values of the screen. This will allow ad designers who want
to use application or device values to adjust as necessary.

• useCustomClose : boolean – true, SDK will stop showing default close graphic and

rely on ad creative’s custom close indicator; false (default), SDK will display the default
close graphic. This property has exactly the same function as the useCustomClose
method (described below), and is provided as a convenience for creators of
expandable ads.

• isModal : boolean – true, the SDK is providing a modal container for the expanded
ad; false, the SDK is not providing a modal container for the expanded ad; this
property is read-only and cannot be set by the ad designer

getExpandProperties method
The getExpandProperties method returns the whole JSON expandProperties object.

Use this method to get the properties for expanding an ad.

getExpandProperties() -> JSON
parameters:
• none
return values:
• { ... } - this object contains the expand properties
events triggered:
• none

setExpandProperties method
The setExpandProperties method sets the whole JSON object.

setExpandProperties(properties)
Use this method to set the ad's expand properties, in particular the maximum width and height
of the ad creative.

parameters:

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 22 of 50

Oct. 20, 2011

• properties: JSON { ... } - this object contains the width and height of the expanded ad.
For more info see properties object.

return values:
• none
events triggered:
• none

Clos in g Ex pandab le and In te r s t it ia l Ads
An MRAID-compliant SDK must provide an end-user with the ability to close an expanded or
interstitial ad. This is a requirement to ensure that users are always able to return to the
publisher content even if an ad has an error. The ad designer may optionally provide
additional design elements to close the expanded or interstitial view via the close() method,
described below.

MRAID requires the location reserved for the close control be a 50x50 clickable area in the
top-right corner of the ad. Reserving this location provides consistency for ad designers
running campaigns across apps and rich media vendors. The default design of the SDK-
controlled close indicator is left to the vendor/app publisher. Ad designers may optionally
choose to provide the indicator for the SDK-supplied close capability, although the ad designer
may not move that capability from the SDK’s specified location. If the ad designer builds the
close indicator into the creative they must specify so via the useCustomClose() method, or as a
convenience by setting useCustomClose in the expandProperties() object. If the ad designer
does not provide its own close indicator graphic within the creative, the SDK will supply its
default close indicator. This SDK-supplied clickable area will be placed at the highest z-order
possible, and must always be available to the end user.

If expand was used with a URL parameter (e.g., a two-part ad), then closing the ad must
display the original content. If the SDK suspended the app when the ad changed to the
expand state, then the SDK should notify the app to resume.

If the expanded or interstitial ad view was closed using the SDK-supplied close control, then
the stateChange event is still fired and the app still notified to resume. Expanded ads must
always listen for the stateChange event and adjust as necessary.

close method
The close method will cause the ad webview to downgrade its state. It will also fire the
stateChange event. For ads in an expanded state, the close() method moves to a default state.
For ads in a default state, the close() method moves to a hidden state. This method may be
used by ad designers as an addition to the SDK-enforced close ability.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 23 of 50

Oct. 20, 2011

close()

parameters:
• none
return values:
• none
event triggered:
• stateChange

useCustomClose method
Although MRAID requires all implementing SDKs to provide a clickable area with a default
“close” indicator graphic, it is possible for ad creators to use their own designs for the close
indicator.

This method serves as a convenience method to the expand property of the same name.
Setting the property or calling this method both have the same effect and can be used
interchangeably. If an ad sets useCustomClose via both expand properties AND this method,
whichever is invoked later will override the earlier setting. They signal the SDK to stop using the
default close indicator.

For expanded ads, the designer does not need to call this method and would normally set the
useCustomClose property in setExpandProperties().

For a stand-alone interstitial where there is no call to expand(), but there is still a close()
requirement, the ad designer should call this method as early as possible.

Ad designers should be clear that an MRAID-compliant SDK is required to show the default
close indicator until the useCustomClose method is called and/or the property is set.

useCustomClose(boolean)
parameters:
• true – ad creative supplies its own designs for the close area
• false – SDK default image should be displayed for the close area
return values:
• none
events triggered:
• none

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 24 of 50

Oct. 20, 2011

Open in g an Em bedded Brow ser
If the ad wants to open an external mobile web site, or micro site, from an MRAID ad, it can
call the open method which will open an embedded browser window in the application.

open method
The open method will display an embedded browser window in the application that loads an
external URL. On device platforms that do not allow an embedded browser, the open method
invokes the native browser with the external URL.

Note: This should be used only for external web pages that are not MRAID ads. The displayed
page will not load the app’s MRAID-compliant SDK and so the close method will not have any
effect on the embedded browser. It can only be closed by the user selecting the close control
for the window, which is implementation specific.

Use this method to open an HTML browser to an external web page. This may launch an
external browser, depending on the SDK implementation. To place the ad over content, use
the expand() method instead.

The native browser controls – back, forward, refresh, close – will always be present. For
reporting, open should always be used for click through actions.

open(URL)
parameters:
• URL - String, the URL of the web page
return values:
• None

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 25 of 50

Oct. 20, 2011

Addendum 1 – Candidates for Future Versions
This addendum outlines additional methods and events currently under discussion by the IAB’s
MRAID working group for possible inclusion in future versions on the MRAID API. None of
the methods or events on pages 25-44 is a part of MRAID 1.0, and all will
require discussion by the IAB working group before they are included in
future MRAID versions. The IAB expects to begin work on MRAID 2.0 with the working
group immediately following the completion of MRAID 1.0.

Methods
• createEvent
• getDefaultPosition
• getExpandProperties
• getKeyboard
• getHeading
• getLocation
• getMaxSize
• getNetwork
• getOrientation
• getScreenSize
• getShakeProperties
• getSize
• getTilt
• hide

• makeCall
• openMap
• playAudio
• playVideo
• request
• resize
• sendMail
• sendSMS
• setExpandProperties
• setShakeProperties
• show
• storePicture
• supports

Events

• headingChange
• keyboardChange
• locationChange
• networkChange
• orientationChange

• response
• screenChange
• shake
• sizeChange
• tiltChange

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 26 of 50

Oct. 20, 2011

R es izin g an Ad
The open() method is intended for click-throughs where an entire web site is loaded in a micro
browser. The expand() method is intended for ads that expand to cover the content of the
application.

In addition to these, the resize() method is intended for ads that grow (or shrink) and the
application content is pushed out of the way (or fills in the empty space).

There are a number of supporting methods for understanding the placement of size of the ad
that must be implemented with resize().

resize method
The resize method will cause the existing Web View to resize itself within the current view
hierarchy using the existing HTML document.

The resize method will move the state from "default" to "resized" and fire the stateChanged
event. If the state is not "default" then there is no effect.

The SDK must notify the app developer that the all view windows should resize as part of a
resize() call.

Note: In most cases, expand is the correct behavior for rich media ads. The resize method
should only be used in views where application content can be moved around within the
existing view hierarchy, for example an ad cell in a table view that can grow and push the
cells above and below apart. Designers should use the getMaxSize method before calling
resize.

Use this method to resize the main ad view to the desired size. The views place in the view
hierarch will not change, so the effect on other views is up to the app developer. To place the
ad over content, use the expand() method instead.

resize(width, height)
parameters:
• width: Number: the width in pixels
• height: Number: the height in pixels
return values:
• none
events triggered:
• sizeChange, stateChange
side effects:
• changes state

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 27 of 50

Oct. 20, 2011

getSize method
The getSize method will return the current size of the ad.

getSize() -> JSON
parameters:
• none
return value:
• JSON - {width, height}
related events:
• none

getMaxSize method
The getMaxSize method returns the maximum size an ad can resize to. This value defaults to
the size of the screen but can be overridden by the app developer in native code. If an ad tries
to resize larger than maxSize, then an error is thrown.

Use this method to return the maximum size an ad can grow to using the resize() method. This
may be set by the developer, or be the size of the parent view.

getMaxSize() -> JSON
parameters:
• none
return value:
• JSON, {width, height} - the maximum width and height the view can grow to
related events:
• none

sizeChange event
The sizeChange event fires when the ads size within the app UI changes. This can be the result
of an orientation change of the device or calls to the resize or expand methods.

This event is thrown when the display state of the web viewer changes.

 “sizeChange” -> function(width, height)
parameters:
• width - Number: the width of the view
• height - Number: the height of the view
triggered by:
• a change in the view size as the result of a resize, expand, close, orientation, or the

app after registering a "size" event listener.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 28 of 50

Oct. 20, 2011

getDefaultPosition method
The getDefaultPosition method returns the position and size of the default ad view regardless
of what state the calling view is in.

Use this method to get the location and size of the default ad view.

getDefaultPosition() -> JSON
parameters:
• none
return values:
• JSON - {x, y, width, height}

getScreenSize method
The getScreenSize method returns the current size of the device screen. To receive updates on
screen size changes use addEventListener for "screen" events.

Use this method to get the maximum pixel width and height of the application. This may be less
than the actual device screen size, depending on the publisher. Although point width (pt) is
preferred over pixel width (px) in the ad design because of device screens with different DPI
specs, it is still essential for the designer to know how many pixels are on the screen..

getScreenSize() -> JSON
parameters:
• none
return values:
• {width, height}
related event:
• screenChange

screenChange event
The screenChange event fires when the devices screen size changes, usually as the result of an
orientation change.

This event is thrown when the device screen size changes.

"screenChange" -> function(width,height)
parameters:
• width - Number: the width of the screen
• height - Number: the height of the screen
triggered by:
• a change in the device orientation after registering a "orientation" event listener.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 29 of 50

Oct. 20, 2011

Disp lay in g an Ad
In cases where the rich media ad needs additional time to prepare resources or interactions,
the designer may wish that the ad is hidden until it is ready. This means that the app view
dedicated to the ad display should not be on screen until a show() method is called. Similarly,
the designer may want the add to completely disappear from the screen – including the
display area – when a user closes the ad. The hide() method is intended to remove the ad’s
web view from the view hierarchy.

show method
The show method will cause a hidden ad to become visible in the default position. The
transition effect is managed by the individual SDK.

The show method will move the state from "hidden" to "default" and fire the stateChange event.
If the state is not "hidden" there is no effect.

This method has no return value and is executed asynchronously (so always listen for a result
event before taking action instead of assuming the change has occurred).

show()
parameters:
• none
return values:
• none
side effects:
• changes the state value
event triggered:
• stateChange

hide method
The hide method will cause ads in their default state to hide themselves and hide the view they
are in.

The hide method will move the state from "default" to "hidden" and fire the stateChanged
event. If the state is not "default" then there is no effect.

Use this method to hide the web viewer. The method has no return value and is executed
asynchronously (so always listen for a result event before taking action instead of assuming the
change has occurred).

hide()
parameters:
• none

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 30 of 50

Oct. 20, 2011

return values:
• none
side effects:
• changes state

Con t r o llin g ex pandP roper t ies
The expand() method can support additional features beyond managing a full-screen view that
covers content. The expand properties object is intended to provide those features to ad
designers.

When an ad calls the expand method, the way the ad expands depends on the
expandProperties. The expandProperties are held in a JSON object that can be written and
read by the ad.

At a minimum, the following properties should be supported.

properties object properties = {
 "useBackground" : "true|false",
 "backgroundColor" : "#rrggbb",
 "backgroundOpacity" : "n.n",
 "lockOrientation" : "true|false"
}

"useBackground"

"useBackground" should contain a boolean value (true/false) indicating the presence of a
background. If "useBackground" is not specified in the properties object, a value of false is
assumed.

"backgroundColor"

"backgroundColor" is a standard numeric RGB value (most logically expressed in hexadecimal
with two digits each for red, green, and blue).

"backgroundOpacity"

"backgroundOpacity" is a number between 0 and 1 inclusively (ranging from 0 equaling fully
transparent to 1 equaling fully opaque). If either "backgroundColor" or "backgroundOpacity"
is not specified in the properties object, values of 0xffffff and 1.0 respectively are assumed.

"lockOrientation"

The "lockOrientation" property is a boolean value (true/false) and if it is not specified in the
properties object a value of false is assumed.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 31 of 50

Oct. 20, 2011

getExpandProperties method
The getExpandProperties method returns the whole JSON object.

Use this method to get the properties for expanding an ad.

getExpandProperties() -> JSON
parameters:
• none
return values:
• { ... } - this object contains all the web viewer properties besides dimension that are

supported by the SDK vendor, for more info see properties object
events triggered:
• none

setExpandProperties method
The setExpandProperties method sets the whole JSON object.

setExpandProperties(properties)
Use this method to set the ad's expand properties.

parameters:
• properties: JSON { ... } - this object contains any number of properties, such as

transition, that might be used by the SDK when presenting the full screen web viewer.
For more info see properties object.

return values:
• none
events triggered:

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 32 of 50

Oct. 20, 2011

Of f lin e R equ est s an d Met r ics
Rich Media Ads that can work while the device is without network connectivity need the ability
to store and later forward metrics about how and when users interact with the ad.

While the following request method and response event are provided for greater flexibility in
offline ads, their use is not confined to offline. An ad designer can use the request/response
pair in an online state to provide Ajax style updates, for example.

request method
The request method makes an HTTP request when the device has network connectivity and
caches the request for later transmission when the device is offline.

The method executes asynchronously, but returns a Boolean value of false to facilitate use in
anchor tags. There is also an option explicitly for metrics tracking that will cache requests
offline and execute them whenever the device reconnects. The display parameter supports the
following values:

value description
ignore the response is ignored

proxy the response is cached if the device is off-line and proxied when connectivity
returns

request(uri, display) -> false
parameters:
• URL - string, the fully qualified URL of the page or call to action asset
• display - string, the display style for the call to action
event triggered:
• response
return values:
• false

response event
The response event is fired when a request method completes and provides the response if
desired.

This event is thrown when a request action with a display type of "proxy" returns a response.

 “response” -> function(uri, response)
parameters:
• uri: String, the URI of the original request action

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 33 of 50

Oct. 20, 2011

• response: String, the full body of the response
triggered by:
• a request() method call returning

Access to Nat iv e Fea tu res
Using standard web technologies in the ad design, and relying on a web viewer in the app to
render ads supports many presentation needs. But for truly rich media advertising, there must
also be support for device features -- many of which are normally only available to application
developers. Devices offer a wide array of functionality beyond simple display of ad content for
rich media ads. The Controller provides a layer of abstraction between the ad designer and
the device to greater enable cross-device media creation.

Dynamic properties require an event listener strategy. Using the addEventListener method
allows the ad developer to access all native features the SDK supports.

Knowing what features are available to listen for, and what the event names are requires a
naming convention. For each feature a Controller supports, the getter method is “get”+feature
name and the event name is feature name+”Change”. For example, if a Controller supports
the device’s native location capabilities, the supported feature is “location”, to get the location
the ad developer would call “getLocation”, and to listen for changes the ad developer would
addEventListener for "locationChange".

As devices differentiate, or hardware vendors innovate, additional native features can be
added using the same naming convention.

supports method
The supports method allows the ad to interrogate the SDK for support of specific device
features.

The controller should support as many of the following features as is possible for a given
device.

value description
network the device can report on its network connectivity and connectivity changes
keyboard the device uses a soft keyboard that impacts display
orientation the device can report on its orientation and orientation changes
screen the device can report on the screen size
heading the device can report on the compass direction it is pointing
location the device can report on its location
shake the device can report on being shaken

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 34 of 50

Oct. 20, 2011

sms the device can send an SMS message
tilt the device can report on its tilt and tilt changes
phone the device can make a phone call
email the device can compose an email
calendar the device can create a calendar entry
camera the device can take a still picture image

supports(feature) -> Boolean
parameters:
• String, name of feature
return values:
• Boolean – true, the feature is supported and getter and events are available; false, the

feature is not supported on this device

Wor k in g w it h t h e Dev ice 's P h y s ica l Ch aracte r is t ics
Most devices have several different kinds of sensors that can report on various physical
characteristics of the device, such as its location, the direction it is pointing, its orientation, and
its motion.

It's important to know that requesting a device's hardware features impacts physical properties
such as battery life and available memory. Ad designers should only request native features on
an as-needed basis and use removeEventListener when the feature is no longer needed.

getHeading method
The getHeading method alone returns the last compass heading of the device. The heading
may be unknown or out-of date.

To activate the compass and receive updates, use addEventListener for "headingChange"
events.

Use this method to get the most recent compass direction of the current vertical axis of the
device. To receive events when the a change occurs, register an event listener for
"headingChange" events. Values are:

value description
-1 no heading known
0-359 compass direction in degrees

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 35 of 50

Oct. 20, 2011

getHeading() -> Number
parameters:
• none
return value:
• Number, the degrees
related event:
• headingChange

headingChange event
The headingChange event fires when the devices compass direction changes.

This event is thrown when the devices compass direction changes.

“headingChange” -> function(heading)
parameters:
• heading: Number, compass heading in degrees or -1
triggered by:
• a change in the device heading after the compass has been activated by registering a

"heading" event listener.

getLocation method
The getLocation method alone returns the last location reading and accuracy of the device.
The location may be unknown or out-of-date.

To activate the location system and receive updates use addEventListener for "locationChange"
events.

Use this method to get the most recent location reading from the device. To receive events
when the a change occurs, register an event listener for "locationChange" events.

getLocation() -> JSON
parameters:
• none
return value:
• JSON, {lat, lon, acc} - the latitude, longitude, and accuracy of the reading or null
related event:
• locationChange

locationChange event
The locationChange event fires when the devices location changes.

This event is thrown when the device has successfully geolocated itself.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 36 of 50

Oct. 20, 2011

“locationChange” -> function(lat, lon, acc)
parameters:
• lat: Number, latitude value of device
• lon: Number, longitude value of device
• acc: Number, accuracy of the reading
triggered by:
• a change in the device heading after the GPS has been activated by registering a

"location" event listener.

getOrientation method
The getOrientation method returns the current device orientation.

To receive updates on orientation changes use addEventListener for "orientationChange"
events.

Use this method to get the most recent orientation of the device. To receive events when a
change occurs, register an event listener for "orientationChange" events. Possible results
include:

value description
-1 device orientation unknown
0 0 degrees (portrait)
90 90 degrees (tilted clockwise to landscape)
180 180 degrees (portrait upside down)
270 270 degrees (tilted counter-clockwise to landscape)

getOrientation() -> Number
parameters:
• none
return values:
• Number
related event:
• orientationChange

orientationChange event
The orientationChange event fires when the device is rotated or tilted to a new orientation.

This event is thrown when the application screen orientation changes.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 37 of 50

Oct. 20, 2011

 “orientationChange” -> function(orientation)
parameters:
• orientation - Integer, degrees from upright portrait view
triggered by:
• a change in the device orientation after registering a "orientation" event listener.

getTilt method
The getTilt method returns the last reported device tilt readings in 3 dimensions.

To receive updates on tilt changes use addEventListened for "tiltChange" events.

This method returns the last reading of the devices 3 dimensional tilt.

getTilt() -> JSON
parameters:
• none
return values:
• JSON - {x, y, z}
related events:
• tiltChange

tiltChange event
The tiltChange event fires when the devices 3 dimensional tilt values change.

This event is thrown when the device has successfully determined its spacial orientation.

 “tiltChange” -> function(x, y, z)
parameters:
• x,y,z – Numbers, the x, y, and z axis values in radians
triggered by:
• a change in the device tilt after the accelerometer is activated by registering a "tilt"

event listener.

getShakeProperties method
The getShakeProperties method returns the current thresholds that define a shake gesture. The
defaults should be sufficient in most cases, but setShakeProperties is available as required.

Use this method to retrieve the current shake properties.

getShakeProperties() -> JSON
parameters:
• none
return values:
• {interval, intensity}

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 38 of 50

Oct. 20, 2011

related events:
• shake

shake event
The shake event fires when the device is shaken within the thresholds of the current shake
properties.

This event is thrown when the device accelerometer detects that the device has been "shaken"
as defined by the getShake parameters. Because the ad developer may register one listener
for a soft shake and another listener for a harder shake, this event provides threshold and time
parameters

 “shake” -> function()
parameters:
• none
triggered by:
• The device if a shake gesture is detected after registering a "shake" event listener.

setShakeProperties method
The setShakeProperties will set ad specific thresholds for what is interpreted by the SDK as a
shake gesture. The default values should be sufficient in most cases and ad designers are not
required (nor encouraged) to use setShakeProperties.

Use this method to set the shake properties. This method rarely needs to be called as
supported devices have default settings.

setShakeProperties(properties)
parameters:
• properties: JSON { intensity, interval }
return values:
• none
events triggered:
• none
side effects:
• none

getKeyboard method
On devices that have a virtual keyboard, the display of the keyboard can affect the ad
display.

The keyboardChange event fires when the virtual keyboard opens or closes.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 39 of 50

Oct. 20, 2011

Use this method to determine if the virtual keyboard is present on the screen. The boolean
result is true if the keyboard is present and false if it is hidden or not applicable.

getKeyboard() -> Boolean
return value:
• Boolean - the virtual keyboard is present
related event:
• keyboardChange

keyboardChange event
This event is thrown when the software keyboard is opened or closed for text entry in an ad.

"keyboardChange" -> function(open)
parameters:
• boolean, open - whether the keyboard is open
triggered by:
• a change in the state of the virtual keyboard after registering a "keyboard" event

listener.

Specia l Med ia Asse t s
Rich Media Ads can access two special asset types that allow them to take a screenshot of the
device's screen and take a picture with the device's camera. Calling the addAsset method with
a URL of "mraid://screenshot" will take a screenshot and save it to the specified alias. Calling
the addAsset method with a URL of "mraid://photo" will open the devices camera interface
and save a photo it to the specified alias.

storePicture method
The storePicture method will place a picture in the device's photo album. The picture may be
local or retrieved from the Internet.

This method will store the image or other media type specified by the URL.

storePicture(URL)
parameter:
• URL -String: the URL to the image or other media asset

Wor k in g w it h Dev ice Con n ect iv it y

getNetwork method
The getNetwork method returns the current network connection type for the device. To receive
updates on network changes use addEventListener for "network" events.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 40 of 50

Oct. 20, 2011

Use this method to identify the most recent network status of the device. To receive events
when a change occurs, register an event listener for "networkChange" events. Possible results
include:

value description
offline no network connection
wifi network using a wifi antennae
cell network using a cellular antennae (such as 3G)
unknown network connection in unknown state

getNetwork() -> String
parameters:
• none
return values:
• String
related event:
• networkChange

networkChange event
The networkChange event fires when the devices network connectivity changes.

This event is thrown when the device network connection changes, such as loosing or
acquiring an Internet connection. The connection type values will vary depending on the
device and carrier.

“networkChange” -> function(online, connection)
parameters:
• online: Boolean, true – device is connected to the Internet, false – device cannot

access the Internet
• connection: String, description of connection type such as none, wifi, or cell
triggered by:
• a change in the state of the network after registering a "network" event listener.

Wor k in g w it h Nat iv e App lica t ion s
Web protocols such as sms: or mailto: allow ad designers to include applications into their rich
media ads by simply using URLs. These protocols are not always consistent across devices.

This specification recommends using methods instead to ensure that the ad and current
application are politely suspended while the user takes action.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 41 of 50

Oct. 20, 2011

createEvent method
The createEvent method opens the device UI to create a new calendar event with default
values provided. The ad is suspended while the UI is open.

Use this method to create a new event in the devices calendar.

createEvent(date, title, body)
parameters:
• date - Date, the date and time of the event
• title - String, the title of the event
• body - String, the body of the event
return value:
• none

makeCall method
The makeCall method opens the device UI for making a phone call to a specified number. The
ad is suspended while the UI is open.

Use this method to make a phone call on from the device to the number provided. This is
similar to a tel:// protocol, but the SDK will attempt to suspend the application.

makeCall(number)
parameters:
• number - String: the phone number
return values:
• none

sendMail method
The sendMail method opens the device UI for sending an email message with the content
provided. The ad is suspended while the UI is open.

Use this method to compose an email message on the device. This is similar to the mailto://
protocol, but the SDK will attempt to suspend the application.

sendMail(recipient, subject, body)
parameters:
• recipient - String, the email address for the message
• subject - String, the subject line of the message
• body - String, the body of the message
return value:
• none

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 42 of 50

Oct. 20, 2011

sendSMS method
The sendSMS method opens the device UI for sending an SMS message with the content
provided. The ad is suspended while the UI is open.

Use this method to compose a SMS message on the device. This is similar to the sms://
protocol, but the SDK will attempt to suspend the application.

sendSMS(recipient, body)
parameters:
• recipient - String, the email address for the message
• body - String, the body of the message
return value:
• none

playAudio method
Use this method to play a audio on the device. This may launch an external player, depending
on the SDK implementation. To place the audio with the content, set the inline property. For the
most part, properties follow the HTML5 audio tag conventions.

Controls:

property values description
autoplay autoplay include if audio should play immediately
controls controls include if native player controls should be visible
loop loop include if video should start over again after finishing
inline inline include if audio should be included with ad content

startStyle normal/fullscreen
set to fullscreen if audio should start playing in native full
screen mode -- user may still use controls to change size,
default is normal

stopStyle normal/exit set to exit if audio player should exit after the audio stops,
default is normal

playAudio(URL, properties)
parameters:
• URL - String, the URL of the audio or audio stream
• properties - JSON:, list of the properties for native player
return values:
• none

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 43 of 50

Oct. 20, 2011

playVideo method
Use this method to play a video on the device. This may launch an external player, depending
on the SDK implementation. To place the video over content, set the inline property. For the
most part, properties follow the HTML5 video tag conventions.

Controls:

property values description
audio muted include if audio track should be muted
autoplay autoplay include if video should play immediately
controls controls include if native player controls should be visible
loop loop include if video should start over again after finishing

inline {top, left} provide the top and left coordinates in pixels if video should
play inline (or on top of) ad content

width (pixels) pixel width of video, required for inline
height (pixels) pixel height of video, required for inline

startStyle normal/fullscreen
set to fullscreen if video should start playing in native full
screen mode -- user may still use controls to change size,
default is normal

stopStyle normal/exit set to exit if video player should exit after the video stops,
default is normal

playVideo(URL, properties)
parameters:
• URL - String, the URL of the video or video stream
• properties - JSON:, list of the properties for native player
return values:
• none

openMap method
Use this method to open a native map with the Point of Interest (POI) parameter formatted
according to the Google Maps standard (see
http://mapki.com/wiki/Google_Map_Parameters)

openMap(POI, fullscreen)
parameters:

• POI - String, Google Maps-formatted argument. The parameter must describe a point
on a map, not, for example, driving directions

• fullscreen - boolean, whether the map displays within the current View or within a new
View that takes up the whole screen

return values:

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 44 of 50

Oct. 20, 2011

• none

Hand lin g Ca ll- t o -Act ion Ev en t s
A rich media ad implements multiple call-to-action events beyond the click to microsite. These
events may be executed as anchor links or scripted functions. This means an SDK cannot just
listen for clicks in the browser. It must support programmatic clicks as well.

Hy per lin k s
Rich media ads can have HTML hyperlinks in them, but the ad developer needs to be careful
about using them. Loading a new web page in the ad view that is not written to the MRAID
spec can leave the ad, and possibly the app, in an unusable state. Additionally, some devices
override or implement certain URLs in their own applications, such as mail, maps, calendar,
SMS, and phone calls. MRAID provides methods for those functions in the Level-2
specification.

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 45 of 50

Oct. 20, 2011

Addendum 2 – Ad Examples and Code
Samples
This addendum contains sample JavaScript for rich media expandable and interstitial ads
created using MRAID 1.0. Full versions of both examples, including javascript and graphics
assets are available as a zip file at www.iab.net/mraid.

Expandable Ad

/*
 * Description: The loader for a rich media (video + expandable) ad
using the MRAID api. This ad has just a base image (w:316px h:728px)
and a video (w:316px h:728px)
 * clicking on which causes the ad to expand (w:949px h:728px). The
expanded layer has a close button (w:24px h:24px) at the top right
corner that is used with customClose
 * Author: Aditya Kalro
 * Company: Yahoo!
 */

document.write("<script src=\"mraid.js\"></script>");

/*
 * Checking for the state of the mraid client library and subscribing
to the ready event if necessary
 * When the client library is ready call the showAd method to render
the ad
 */
if (mraid.getState() != 'ready') {
 console.log("MRAID Ad: adding event listener for ready");
 mraid.addEventListener('ready', showAd);
} else {
 showAd();
}

/*
 * The showAd method registers event listeners for the mraid events and
renders
 * the base ad (simple image)
 */
function showAd() {
 basePath = "http://localhost:8666/yahoo.ads.mraid_richmedia/";
 registerMraidHandlers(mraid, basePath);
 renderBaseAd(mraid, basePath);
 /*
 * set the expand properties to use the custom close method
since the ad
 * renders it's own close button in the expanded layer
 */

http://www.iab.net/mraid

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 46 of 50

Oct. 20, 2011

 mraid.setExpandProperties({
 useCustomClose : true
 });
};

/*
 * Add a listener to the stateChange event to figure out what state the
client
 * listener is in and whether to render the rich functionality or not
 */
function registerMraidHandlers(mraid, basePath) {
 mraid.addEventListener("stateChange", function(state) {
 switch (state) {
 // Event trigger when the ad-container goes offscreen
 case "hidden":
 removeOverlayLayer();
 break;
 // Event trigger when the ad-container is onscreen
 case "default":
 renderOverlayLayer(mraid, basePath);
 break;
 }
 });
}

/*
 * Render the base image of the ad (this is what is rendered in the
hidden
 * state).
 */
function renderBaseAd(mraid, basePath) {
 var imageURL = basePath + "assets/mraid_column_static.jpg";
 console.log("rendering base ad");
 var baseImage = document.createElement("img");
 baseImage.setAttribute("id", "base_img");
 baseImage.src = imageURL;
 baseImage.setAttribute("style", "border:0px; width:316px;
height:728px;");
 document.appendChild(baseImage);

}

function resolveVideoPath(path, cb) {
 console.log("in resolveVideoPath");
 cb(path);
}

/*
 * Rendering the rich functionality of the ad (is called when the ad
comes
 * onscreen) This renders the richmedia overlay div and adds a video
into it.
 * Clicking on the div results in it's expansion (ad_expand method)
 */
function renderOverlayLayer(mraid, basePath) {

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 47 of 50

Oct. 20, 2011

 console.log("Rendering overlay layer");
 var overlayContainer = document.createElement("div");
 overlayContainer.setAttribute("id", "overlayContainer_mraid");
 var bkgImagePath = basePath +
"assets/mraid_main_bg_949x728.jpg";
 overlayContainer
 .setAttribute(
 "style",

 "width:949px;height:728px;position:absolute;right:-
633px;top:0px;z-index:1000;display:none;background:url("
 + bkgImagePath +
")");
 document.appendChild(overlayContainer);
 resolveVideoPath(
 basePath + "assets/mraid_column4.mp4",
 function(videoPath) {
 var closeButtonPath = basePath +
"assets/close-button.png";
 overlayContainer.innerHTML = "<video
width='316px' height='728px' loop=\"true\" id = \"video_elem\" src='"
 + videoPath
 + "'></video>"
 + "<img
style='position:absolute;right:10px;top:10px;' src='"
 + closeButtonPath + "'
width='24px' height='24px'/>";
 var videoPlayer =
document.getElementById("video_elem");

// Make sure video is playing to avoid blink as video
// player is loading
 videoPlayer.addEventListener("playing", function() {
 console.log("Video has started playing");
 overlayContainer.style.display = "block";
 videoPlayer.style.display
 }, false);

 videoPlayer.addEventListener("play", function() {
 console.log("Video has started playing");
 overlayContainer.style.display = "block";
 }, false);

 videoPlayer.addEventListener("click", function() {
 ad_expand(mraid, videoPlayer, overlayContainer);
 }, false);

 var closeButton =
overlayContainer.getElementsByTagName("img")[0];
 closeButton.addEventListener("click", function() {
 ad_close(mraid, videoPlayer, overlayContainer);
 }, false);

 videoPlayer.play();
});

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 48 of 50

Oct. 20, 2011

}

/*
 * The handler for closing the expanded layer of the ad. The
mraid.close method
 * is used here to make sure that the ad publishing app knows about the
change
 * in the state of the ad.
 */
function ad_close(mraid, videoPlayer, overlayContainer) {
 overlayContainer.style.webkitTransition = "-webkit-transform
250ms ease-in-out";
 overlayContainer.style.webkitTransform = "translateX(0)";
 overlayContainer.addEventListener("webkitTransitionEnd",
function() {
 videoPlayer.style.display = "block";

 overlayContainer.removeEventListener("webkitTransitionEnd",
 arguments.callee, false);
 }, false);
 // Notifies the content of the ad closing
 mraid.close();

}

/*
 * The handler for expanding the ad. The mraid.expand method is used
here to
 * make sure that the ad publishing app knows about the change in the
state of
 * the ad.
 */

function ad_expand(mraid, videoPlayer, overlayContainer) {
 // Notifies the content of the ad taking over the screen
 mraid.expand();
 videoPlayer.style.display = "none";
 overlayContainer.style.webkitTransition = "-webkit-transform
250ms ease-in-out";
 overlayContainer.style.webkitTransform = "translateX(-633px)";
}

/*
 * Removes the overlay layer when the ad is going offscreen
 */
function removeOverlayLayer() {
 var overlayContainer =
document.getElementById("overlayContainer_mraid");
 mraid.close();
}

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 49 of 50

Oct. 20, 2011

Interstitial Ad
/*
 * Description: The loader for a static (basic clickable) ad using the
MRAID api. This ad has just one image w:316px h:728px that clicks
 * through to a landing page (www.livestand.com)
 * Author: Aditya Kalro
 * Company: Yahoo!
 */

document.write("<script src=\"mraid.js\"></script>");

/*
 * Checking for the state of the mraid client library and subscribing
to the ready event if necessary
 * When the client library is ready call the showAd method to render
the ad
 */
if (mraid.getState() != 'ready') {
 console.log("MRAID Ad: adding event listener for ready");
 mraid.addEventListener('ready', showAd);
} else {
 showAd();
}

/*
 * The showAd method registers event listeners for the mraid events and
renders
 * the base ad (simple image)
 */
function showAd() {
 basePath = "http://localhost:8666/yahoo.ads.mraid_static/";
 registerMraidHandlers(mraid, basePath);
 renderBaseAd(mraid, basePath);
 /*
 * set the expand properties to use the custom close method
since the ad
 * renders its own close button in the expanded layer
 */
 mraid.setExpandProperties({
 useCustomClose : true
 });
};

/*
 * Add a listener to the stateChange event to figure out what state the
client
 * listener is in and whether to render the rich functionality or not
 */
function registerMraidHandlers(mraid, basePath) {
 mraid.addEventListener("stateChange", function(state) {
 switch (state) {
 // Event trigger when the ad-container goes offscreen
 case "hidden":
 break;

IAB Mobile Rich-media Ad Interface Definitions v.1.0

Page 50 of 50

Oct. 20, 2011

 // Event trigger when the ad-container is onscreen
 case "default":
 // This is where the impression beacon (if any)
should be fired
 break;
 }
 });
}

/*
 * Render the basic ad (an image with wrapped in an anchor element)
 */
function renderBaseAd(mraid, basePath) {
 var landingPage = "http://www.yahoo.com";
 var imageURL = basePath + "assets/mraid_column_example.jpg",
adImage = "<img width='316px' height='728px' border=0 src='"
 + imageURL + "'/>";
 var anchor = "<a id=\"base_image_example\" href=\"" +
landingPage + "\"> "
 + adImage + "";
 document.write(anchor);
 var anchorElement =
document.getElementById("base_image_example");
 anchorElement.onclick = function() {
 console.log("Clicking on anchorElement = " +
anchorElement.href);
 mraid.open(anchorElement.href);
 return false;
 };
}

	Table of Contents
	Contributors
	Acknowledgement
	About MRAID
	IAB Contact Information
	Executive Summary
	General SDK Requirements for Supporting MRAID
	Technical Audience
	Native Application Developer
	SDK Developer
	Ad Developer

	Out of Scope
	Standard Web Technologies
	Ad Server Requirements
	Requirements for Ad Rendering
	Display of HTML Ads – Ad View Container

	Requirements for Ad Developers
	Display Control for Rich Media Ads – Ad Controller

	Lifecycle Examples
	Simple Ad Lifecycle Example
	Rich Media Ad Lifecycle Example
	Version 1
	Future Versions

	Interface Requirements and Definitions
	Identification
	MRAID script reference

	Initialization
	ready event
	getVersion method

	Preloading and Initial Display
	Event Handling
	addEventListener method
	removeEventListener method

	Error Handling
	error event

	Controlling Ad Display
	getState method, stateChange event
	isViewable method, viewableChange event
	expand method

	Controlling expandProperties
	getExpandProperties method
	setExpandProperties method

	Closing Expandable and Interstitial Ads
	close method

	Opening an Embedded Browser
	open method

	Addendum 1 – Candidates for Future Versions
	Resizing an Ad
	resize method
	getSize method
	getMaxSize method
	sizeChange event
	getDefaultPosition method
	getScreenSize method
	screenChange event

	Displaying an Ad
	show method
	hide method

	Controlling expandProperties
	"useBackground"
	"backgroundColor"
	"backgroundOpacity"
	"lockOrientation"
	getExpandProperties method
	setExpandProperties method

	Offline Requests and Metrics
	request method
	response event

	Access to Native Features
	supports method

	Working with the Device's Physical Characteristics
	getHeading method
	headingChange event
	getLocation method
	locationChange event
	getOrientation method
	orientationChange event
	getTilt method
	tiltChange event
	getShakeProperties method
	shake event
	setShakeProperties method
	getKeyboard method
	keyboardChange event

	Special Media Assets
	storePicture method

	Working with Device Connectivity
	getNetwork method
	networkChange event

	Working with Native Applications
	createEvent method
	makeCall method
	sendMail method
	sendSMS method
	playAudio method
	playVideo method
	openMap method

	Handling Call-to-Action Events
	Hyperlinks

	Addendum 2 – Ad Examples and Code Samples
	Expandable Ad
	Interstitial Ad

