
Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 1	 VPAID_v2.0	

VIDEO PLAYER-AD INTERFACE
DEFINITION (VPAID)
VERSION 2.0

Released April 10th, 2012

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 2	 VPAID_v2.0	

This document was developed by the IAB Digital Video Committee

The Video Player-Ad Interface Definition (VPAID) Guidelines was updated to version 2.0 by a
working group of volunteers from 42 IAB member companies.

The Working Group was led by Co-Chairs:

• Teg Grenager, Adap.tv
• Payam Shodjai, Google/YouTube

The following IAB member companies contributed to this document:

24/7 Real Media
Adap.tv
Adobe Systems
AppNexus
Auditude
BlackArrow
Brightcove
Brightroll
Cable Television
Laboratories, Inc.
CBS Interactive
Comcast Interactive
Media
Digital Broadcasting
Group
Evidon

FreeWheel
Google & YouTube
HealthiNation
ImServices Group Ltd.
Innovid, Inc.
Kantar Video
LiveRail, Inc.
MediaMind
Microsoft
Mixpo
NBC Universal Digital
Media
New York Times
Nielsen
OneScreen
Ooyala

PointRoll
SeaChange International
SpotXchange
TargetSpot
Tremor Video
TRUSTe
TubeMogul
Turner Broadcasting
System
Unicast
Vindico
Weather.com
Yahoo!
YuMe

The IAB leads on this initiative were Chris Mejia and Katie Stroud

Contact adtechnology@iab.net to comment on this document. Please be sure to include the
version number of this document (found on the bottom right corner on this page).

ABOUT THE IAB’S DIGITAL VIDEO COMMITTEE
The Digital Video Committee of the IAB is comprised of over 180 member companies actively
engaged in the creation and execution of digital video advertising. One of the goals of the
committee is to implement a comprehensive set of guidelines, measurement, and creative
options for interactive video advertising. The Committee works to educate marketers and
agencies on the strength of digital video as a marketing vehicle. A full list of Committee
member companies can be found at: www.iab.net/digital_video_committee

This document is on the IAB website at: http://www.iab.net/videosuite/vpaid

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 3	 VPAID_v2.0	

Table of Contents

Executive Summary ... 6	
Intended Audience .. 7	
Other IAB Digital Video Guidelines .. 7	
Updates in VPAID Version 2.0 .. 7	

1	 Introduction ... 8	
1.1	 VPAID Enables Ad Interactivity .. 9	
1.2	 Video Ad Flow with VPAID .. 10	
1.3	 Cross-Platform Support .. 11	
1.4	 Scope and Limitation ... 11	
1.5	 VPAID, MRAID and Mobile Technology .. 12	

2	 API Reference .. 12	
2.1	 Guiding Principles .. 12	
2.2	 Notation .. 13	
2.3	 Video Player Requirements .. 13	

2.3.1	 Displaying the Ad Unit Creative .. 13	
2.4	 Ad Unit Requirements .. 14	
2.5	 Using VPAID in Conjunction with VAST ... 14	

2.5.1	 API Framework .. 14	
2.5.2	 How to Initialize the VPAID Ad Unit .. 14	
2.5.3	 How to handle event tracking .. 15	
2.5.4	 How to handle VPAID clicks in VAST context ... 16	
2.5.5	 How to Interpret the VAST Linear/Duration Element .. 16	

3	 VPAID Protocol Details ... 17	
3.1	 Methods .. 18	

3.1.1	 handshakeVersion .. 18	
3.1.2	 initAd() ... 18	
3.1.3	 resizeAd() .. 19	
3.1.4	 startAd() .. 19	
3.1.5	 stopAd() .. 20	
3.1.6	 pauseAd() ... 21	
3.1.7	 resumeAd() .. 21	
3.1.8	 expandAd() ... 21	
3.1.9	 collapseAd() ... 21	
3.1.10	 skipAd() .. 22	

3.2	 Properties .. 23	

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 4	 VPAID_v2.0	

3.2.1	 adLinear .. 23	
3.2.2	 adWidth .. 23	
3.2.3	 adHeight ... 23	
3.2.4	 adExpanded ... 24	
3.2.5	 adSkippableState ... 24	
3.2.6	 adRemainingTime ... 25	
3.2.7	 adDuration .. 25	
3.2.8	 adVolume .. 25	
3.2.9	 adCompanions ... 26	
3.2.10	 adIcons ... 27	

3.3	 Dispatched Events .. 28	
3.3.1	 AdLoaded ... 28	
3.3.2	 AdStarted .. 28	
3.3.3	 AdStopped .. 28	
3.3.4	 AdSkipped .. 28	
3.3.5	 AdSkippableStateChange ... 28	
3.3.6	 AdSizeChange ... 29	
3.3.7	 AdLinearChange ... 29	
3.3.8	 AdDurationChange .. 29	
3.3.9	 AdExpandedChange ... 29	
3.3.10	 AdRemainingTimeChange (Deprecated in 2.0) .. 30	
3.3.11	 AdVolumeChange ... 30	
3.3.12	 AdImpression ... 30	
3.3.13	 AdVideoStart, AdVideoFirstQuartile, AdVideoMidpoint, AdVideoThirdQuartile,

AdVideoComplete .. 30	
3.3.14	 AdClickThru .. 31	
3.3.15	 AdInteraction .. 31	
3.3.16	 AdUserAcceptInvitation, AdUserMinimize, AdUserClose 31	
3.3.17	 AdPaused, AdPlaying .. 31	
3.3.18	 AdLog ... 32	
3.3.19	 AdError ... 32	

3.4	 Error Handling and Timeouts ... 33	

4	 Security ... 33	

5	 Example Ads and the VPAID Process 34	
5.1	 Clickable Pre-Roll ... 34	
5.2	 Companion Banner .. 35	
5.3	 Overlay Banner ... 35	
5.4	 Overlay Banner with Click-to-Linear Video Ad ... 36	

6	 ActionScript 3 Implementation 37	
6.1	 API Specifics .. 37	
6.2	 Custom events .. 40	
6.3	 Security .. 41	

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 5	 VPAID_v2.0	

7	 Silverlight Implementation 41	
7.1	 API Specifics .. 41	
7.2	 Custom Events .. 43	
7.3	 Security .. 43	

8	 JavaScript Implementation 44	
8.1	 API Specifics .. 44	

8.1.1	 Methods .. 44	
8.1.2	 Properties .. 46	
8.1.3	 Security .. 46	
8.1.4	 Ad Rendering and Namespace Management ... 46	
8.1.5	 Examples ... 47	

9	 Glossary .. 58	

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 6	 VPAID_v2.0	

Executive Summary
The IAB’s Video Player Ad-Serving Interface Definition (VPAID) establishes a common interface
between video players and ad units, enabling a rich interactive in-stream ad experience.

In-stream video advertisers have two important execution goals for the delivery of their video
ad campaigns: a) provide viewers a rich ad experience, and b) capture ad playback and
user-interaction details that report on the viewed ad experience. To achieve these goals in a
world without common video player functionality, advertisers would have to develop multiple
specialized versions of their ad creative for every unique video player—an expensive
proposition that doesn’t scale well.

The Video Ad-Serving Template (VAST), another IAB specification, provides a common ad
response format for video players that enables video ads to be served across all compliant
video players. However, VAST alone does not provide support for rich interactivity. VAST
alone only supports relatively simple in-stream video ad formats that are not executable. These
simple ad formats do not provide an interactive user experience, and do not allow the
advertiser to collect rich interaction details.

Layering VPAID onto VAST offers an enhanced solution. VPAID establishes a common
communication protocol between video players and ad units that allows a single “executable
ad” (one that requires software logic to be executed as part of ad playback) to be displayed
in-stream with the publisher’s video content, in any compliant video player. Furthermore, it
enables the executable ad unit to expect and rely upon a common set of functionality from the
video player. VPAID enables the video player to expect and rely upon a common set of
functionality from the executable ad unit. The significance is that advertisers using VPAID ads
can provide rich ad experiences for viewers and collect ad playback and interaction details
that are just as rich as the ad experience.

With the adoption of VPAID, advertisers have more control over the display experience in their
video campaigns. Also, as VPAID compliant video players enable a more diverse and
interactive set of video advertising, VPAID compliant publishers should expect to sell more in-
stream video inventory.

With VPAID, the IAB aims to address the following market inefficiencies for publishers,
advertisers, and vendors by:

• Increasing common video ad supply technology so that video publishers can readily
accept video ad serving from agency ad servers and networks;

• Providing common technology specifications for advertisers to develop against,
thereby decreasing the cost of creative production and thus increasing business ROI;

• Improving video ad supply liquidity, thus decreasing the cost of integration with each
publisher.

To improve the interactive ad experience in video players, publishers should build their video
players to the VPAID specifications outlined in this document. These specifications were
defined with creativity and innovation in mind and should not limit video player design.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 7	 VPAID_v2.0	

As with all IAB guidelines and specifications, this document will be updated as video
advertising progresses and new ad formats become more widely adopted.

Intended Audience
Anyone involved in the in-stream (also referred to as “in-player”) video advertising supply
chain can benefit from being familiar with this specification, however implementation details
are targeted toward the developers of executable in-stream video ads, and video player
software developers. Specifically, video software engineers and video product managers
should use this document as a guide when implementing technology designed to support
VPAID.

Other IAB Digital Video Guidelines
The VPAID solution is part of a larger initiative to improve the liquidity of digital video
advertising. This initiative includes the following:

• Video Ad Serving Template (VAST)
• Video Ads Multi-Playlist (VMAP)
• Digital Video Measurement Guidelines
• Digital Video Ad Format Guidelines and Best Practices
• Digital Video In-Stream Ad Metrics Definitions

Updates in VPAID Version 2.0
VPAID 1.0 enabled cross-platform support for rich in-stream video ads. As VPAID acceptance
has begun to permeate the industry, VPAID 2.0 brings enhancements and additions that
provide support for more interactive capabilities and improved reporting.

Updates in VPAID 2.0 are summarized below:

• Document Rewrite: The content in VPAID 2.0 has been reorganized and simplified
where possible to improve the flow of explanations, while also empowering non-
technical readers to understand VPAID.

• VPAID and VAST: A valid VPAID object can be used in conjunction with the IAB
Video Ad-Serving Template (VAST) and is highly recommended, as VAST ads that
include VPAID protocols can play in both VAST and VPAID-enabled video players.
VPAID 2.0 includes details about how to use VPAID protocols in a VAST ad unit.

• Support for HTML 5: HTML 5 is an emerging Web syntax that has the potential to
enable cross-platform/cross-device support for the latest trends in multimedia. Details
for HTML 5 use of VPAID are included in this update. See Section 8 for details.

• Technical feature updates: In order to support added features for advanced
display and reporting, the following properties, methods and dispatched events have
been added or changed in this update:

Methods
 resizeAd(): clarification has been added about how to use this method in

fullscreen mode

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 8	 VPAID_v2.0	

 skipAd(): added to enable the video player to include controls for allowing its
audience to skip ads. The new AdSkipped event is dispatched by the ad unit
in response to this call.

Properties
 adLinear: clarification added to indicate when the property should be used
 adWidth: added to provide current width of ad unit after ad has resized
 adHeight: added to provide current height of ad unit after ad has resized
 adDuration: reports total duration to more clearly report on the changing

duration, which is confusing when both remaining time and duration can
change

 adCompanions: included to support ad companions in VPAID, when
companion information is not available until after the VPAID .swf file has
already loaded.

 adIcons: included to support various industry programs which require the
overlay of icons on the ad.

 adSkippableState: in support of skippable ads, this feature enables the video
player to identify when the ad is in a state where it can be skipped.

Dispatched Events
 AdStopped: clarification added to indicate that the AdStopped event is to

be used as a response to stopAd() (or dispatched when the ad has stopped
itself) rather than as a request to the video player to call stopAd().

 AdSizeChange: added to enable confirmation to a resizeAd() method
call from the video player

 AdDurationChange: instead of reporting AdRemainingTimeChange,
AdDurationChange reports changes on the total duration that can change
with user interaction. In the event of an AdDurationChange, both
adRemainingTime and adDuration properties are updated

 AdInteraction: added to capture users’ interactions with the ad other than the
ClickThru events.

 AdSkipped: added to support ads that include skip controls. This event can be
triggered by controls in the ad unit or in response to the video player calling the
skipAd() method.

 AdSkippableStateChange: added to support skippable ads, this event enables
the ad unit to report when the ad is in a skippable state

1 Introduction
Ads served into a publisher’s video content stream render within the video player environment
inline with the video content, while traditional banners render on the webpage itself. The video
player makes the ad call (instead of the browser) and interprets the ad response from the ad
server. The video player is also the run-time environment for the in-stream video ad unit and
controls its lifecycle.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 9	 VPAID_v2.0	

This relationship between the video player and the in-stream video ad unit becomes more
complex as technology advances. Many ads displayed in-stream with video content are
executable: they contain logic which must be executed by the video player in order to provide
an interactive user experience and/or to support the collection of a rich set of interaction
metrics. If video players are to support these executable ad units, they require an API to
support ongoing communication between the players and the ad units.

VPAID offers an API to facilitate increasing complexity in video advertising, enabling video
players to accept more ads, and a platform that offers more value to advertisers and
publishers alike.

1.1 VPAID Enables Ad Interactivity
Relative to standard linear video ads, executable ads provide a far more dynamic advertising
experience for consumers, because they enable rich user interaction. For example, an
executable in-stream video ad unit may include additional clickable links and buttons that
allow the user to view a longer form of the ad, share the ad using social media, or request
more information, such as store locations or show times. These rich interactions can be
captured in real-time metrics, offering advertisers interaction reports that are just as rich as the
advertising experience. The VPAID API allows advertisers to distribute these executable ads
across a broad set of compliant video players and publishers, to many compliant publishers.

In the diagram below, both a VPAID ad unit and a VAST ad unit have been served to a video
player:

The VAST ad unit is served as a package: everything needed to serve the ad is included in the
VAST XML document for the ad unit. The video player can only report on certain essential

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 10	 VPAID_v2.0	

events like start, click, pause, play, etc. User interactions can’t change the ad playback in any
way. The ad plays for a set duration with only basic interactions.

With a VPAID-compliant executable ad unit, the interactive experience engages users and
offers a dynamic brand opportunity for the advertiser. Such interactions happen in real time
and can be reported to the advertiser.

Because VPAID offers such a dynamic advertising experience and a growing acceptance in
the industry, advertisers are increasing their use of VPAID-enabled ad units. Publishers offering
video players that are VPAID-enabled can accept more of these ads—often for premium
compensation.

1.2 Video Ad Flow with VPAID
VPAID opens a line of communication between an executable ad unit and a video player. This
open line of communication makes it possible for the two to interact. For example, if an ad is
designed to play at a particular moment during a video, the video player can notify the ad unit
when the moment is reached so the ad can display as designed. Likewise, if the state of an ad
changes because of user interaction, notice of the change from the video player can trigger
the ad unit to react.

The diagram below displays a simplified example of how a video ad unit and video player
interact using VPAID:

1. Call: The player makes an ad call to the ad server. The format for this ad call is not
specified in these guidelines in order to maintain flexibility for the many variations of
ad server formats.

2. Response: The ad server responds with a VAST XML containing a VPAID-compliant
executable ad unit.

3. Ongoing Communication: The video player and the ad unit remain in
communication as the ad executes and displays to the user. Using VPAID, the video

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 11	 VPAID_v2.0	

player can get and set properties for the ad unit, and the ad unit can dispatch events
to the video player.

4. Tracking Impressions & Activities: The video player and the ad unit can each
send impression and activity tracking requests to their respective ad servers (ad server
tracking is not specified by VPAID).

1.3 Cross-Platform Support
VPAID is designed as a platform-independent API. The API must be defined individually for
each platform that the video player and in-line video ad unit run on: AS2, AS3, Silverlight,
JavaScript. However, to be clear, it does not help bridge platforms. Nothing in VPAID enables
an executable ad unit designed to run on one platform such as Flash™, run in a video player
that does not support that platform (i.e. built using JavaScript).

1.4 Scope and Limitation
VPAID is designed for video players that are capable of loading and running executable in-
stream video ad units using one of the supported platforms. The scope of this guideline is to
provide recommendations that enable a common interface between an in-stream video ad unit
and video player so that the video player can execute on an ad unit’s interactive instructions
and record/report the results. Other uses are possible, but certain limitations and specific
scope should be noted.

Note: VPAID is not limited to an interface specifically between an ad unit and a video player.
Other application interface layers may work with VPAID as long as, when combined, the
VPAID specification and interface are respected.

The following technical scenarios are out of scope:

Bridging Video Player and Ad Unit Technologies: While VPAID establishes
a common interface to bridge communication between an ad unit and the video
player, the technology supports ad unit display behavior and tracking capabilities.
Specifications for playing an ad unit of one technology within the video player of
another technology are not included. For example, VPAID doesn’t enable a Flash™
player to play Silverlight™ ads. Mechanisms exist for addressing the incompatibility,
but are not covered as a feature of VPAID at this time.

Preloading Logic: VPAID enables the video player to preload an ad unit before
rendering it. However, these guidelines don’t address the logic for how to preload an
ad or how to deal with the ramifications that preloading has on impression counts.

Impression and Display Tracking Guidelines: VPAID enables rich display
and interaction tracking and provides details about how this works. However, the
timing and method for what and when to count is out of scope for this document.
Please refer to the IAB Digital Video Ad Measurement Guidelines for impression and
display tracking guidelines.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 12	 VPAID_v2.0	

Ad Rule Management: The logic for managing ad rules and any included
business rules for deciding when to make an ad call and which type of ad to call are
out of scope for this document.

1.5 VPAID, MRAID and Mobile Technology
VPAID was designed to work across multiple platforms, many of which include various mobile
devices. However, VPAID interactions are limited where specific mobile interactions apply. For
example, VPAID isn’t designed to track use of the accelerometer in mobile devices such as
when the user “shakes” the mobile device to play a song or initiate some other action.

IAB offers a specification for managing interactions between mobile apps and rich media ad
units. The Mobile Rich Media Ad Interface Definition (MRAID) can be used for ads targeted
specifically to mobile devices where ads are played in mobile applications, but VPAID is for
use in campaigns targeted to digital video across any technical video player platform,
including mobile.

2 API Reference
This section provides general information about VPAID such as the guiding principles for
design, video player and ad unit requirements, dependency on XML, and using VPAID in a
VAST context.

2.1 Guiding Principles
VPAID was designed using the following guiding principles:

1. Generalized: the API needs to be generalized enough to support emerging
interactive ad formats. For example, the API should enable video players to position
ads in time and space when sufficient data is available.

2. Simple: the API needs to be as simple as possible while still satisfying the ability to
offer generalized support for emerging ad formats (as stated in principle 1 above).

3. Shift the API burden on to the video player: The video player must implement
the API so that it can display any VPAID ads without requiring API implementation in
simple ad formats.

4. Video Player in control: the API is designed in a way that the ad unit could
request certain services from the video player, but the video player ultimately remains
in control of the overall run-time environment. For example, the video player has the
ability to unload a misbehaving ad unit.

5. Keep the ad unit portable: API specifications should allow the ad unit to be
independent of the ad request parameters, XML schema used to traffic the ad unit,
reporting beacon formats, etc. Separating the ad unit from specific technologies
enables the ad unit to be portable across the multiple ad platforms.

6. Consistency across technology implementations: the API should function
across all ad development solutions such as: AS2, AS3, Silverlight, JavaScript, etc.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 13	 VPAID_v2.0	

7. Compatibility with previous versions: In VPAID 2.0 changes and additions
were added with respect to compatibility with previous versions of VPAID. A VPAID
2.0 video player should operate without error when interfacing with an ad unit that
implements an earlier version of VPAID such as VPAID 1.1. Likewise, a VPAID 2.0 ad
unit should display properly in a VPAID 1.1 video player; however, version 2.0
functionality would not be supported. Also, both the ad unit and the video player may
need to relax version control in older versions for backwards compatibility. Please
report compatibility issues to adtechnology@iab.net, noting the versions of both ad
and player tested.

2.2 Notation
The following table describes notation conventions used in VPAID.

name : Type Specifies a variable, property or method name followed by data types or
return data type.

{} Specifies an object with name : Type properties

Array<Type> Specifies an array of a particular data type.

[] Specifies optional parameters or data structure properties.

| Specifies “or” for data structure properties.

* Specifies repeat 0 or more times

+ Specifies repeat 1 or more times.

2.3 Video Player Requirements
The video player must implement ad loading, check for presence of VPAID, and if present,
implement the correct VPAID version. Recovery mechanisms should also be in place should the
ad unit fail to follow specified protocols correctly. For example, if the video player does not
receive the AdStopped event from an ad unit after sending a call to stopAd(), the video
player should be prepared to react appropriately.

Without recovery mechanisms, an improperly scripted ad unit may cause the video player to
crash. Uncaught exceptions should never be thrown while handling VPAID events from the ad
unit. See Implementation sections for more specific requirements. Section 3.4 provides details
on error handling and recommended recovery action for specific timeout situations.

2.3.1 Displaying the Ad Unit Creative
The video advertising industry expects that an impression has indicated that an ad was viewed
by an end user. Therefore, the video player should ensure that no other visual elements from

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 14	 VPAID_v2.0	

the video player, the webpage, or other ads, display over a video ad that is currently in
progress.

Also, since video ad creative are expected to adhere to industry guidelines that include a
“Close X” button, the video player should not include its own close button for VPAID ad units.

2.4 Ad Unit Requirements
If the ad unit implements VPAID, it must indicate the correct version. The ad unit must implement
all methods and properties listed, but can either decline from responding or return a value that
indicates that the method or property is not supported. For example, if the ad unit implements
VPAID 2.0, then values for properties such as adCompanions or adDuration should be
provided but can provide values that indicate that the property is not in use.

The ad unit should never allow uncaught exceptions to be thrown during calls into VPAID from
the video player. See Implementation sections for more specific requirements.

2.5 Using VPAID in Conjunction with VAST
Where possible, VPAID should be sent to the video player in a VAST ad response. This section
provides information about how VAST and VPAID work together.

2.5.1 API Framework
When a VPAID ad unit is referenced from a VAST document, the value for the
apiFramework attribute in the <MediaFile> element must be VPAID (all caps). This
attribute identifies the VPAID API for the creative. Version information should be handled by the
VPAID handshakeVersion() call (rather than identified in the VAST file). See Section
3.1.1 for more information.

2.5.2 How to Initialize the VPAID Ad Unit
When using VAST, the only way to pass information from VAST into a VPAID ad unit is using
the <AdParameters> elements in VAST.

Linear and nonlinear VPAID ad units are loaded in a VAST context using the VPAID
initAd() method. Depending on the ad unit’s linearity, the creativeData parameter
in this method must be set to accept <AdParameters> value from either the <Linear>
or the <NonLinear> element from the VAST document. In VAST, the AdParameters
value may be wrapped in a CDATA block but the ad unit may have trouble processing the]>
tring used to close a CDATA block.

To identify the platform used to implement the ad unit (i.e. MIME types such as application/x-
shockwave-flash or application/javascript), use the type attribute on the <MediaFile>
element in VAST if it’s a linear creative. For a nonlinear creative, if using StaticResource
then use the creativeType attribute, if using HTMLResource, the implication is that the
creative is javascript. If two or more technology platforms are provided through multiple media
files, the video player should use the one closest to its own technology.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 15	 VPAID_v2.0	

In the initAd() function call, the environmentVars function parameter is optional. It
should be used when certain information is unavailable as the VPAID ad unit is requested, but
made known as the VPAID ad unit loads.

2.5.3 How to handle event tracking
When a VPAID ad unit is sent to the video player in a VAST response, the video player may
receive VPAID events from the ad unit. In this situation, the video player should send requests
to the tracking URI(s) in the VAST response for the VAST event that corresponds to the VPAID
event.

For example, if the video player received the VPAID event AdVideoStart, and there was
a tracking URI in the VAST response for the corresponding VAST event ”start”, then the
video player should send a request to VAST tracking URI. Note that some VPAID events do not
have corresponding VAST events, such as the AdLinearChange event.

Duplicate events may be recorded if the VPAID ad unit sends tracking requests to the event-
tracking URIs while also dispatching VPAID events to the video player because the video
player may also send tracking requests to the same event URIs.

Table 2.5.3 below shows the correspondence between VPAID events and VAST events. When
served in a VAST response, VPAID events in the left column of the table should trigger the
corresponding VAST event (if any) in the column on the right.

Receive VPAID event… …triggers VAST TrackingEvent
AdLoaded -

AdSkipped skip

AdStarted creativeView

AdStopped -

AdLinearChange -

AdExpandedChange -

AdRemainingTimeChange -

AdVolumeChange if (currentVolume==0 and lastVolume>0) then mute
if (currentVolume>0 and lastVolume==0) then unmute

AdImpression <Impression> (the VAST element; not an event type)

AdVideoStart,
AdVideoFirstQuartile,
AdVideoMidpoint,
AdVideoThirdQuartile,
AdVideoComplete

start,
firstQuartile,
midpoint,
thirdQuartile,
complete

AdClickThru <ClickTracking> (ClickTracking is a VAST element under
<VideoClicks>, not an event type)

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 16	 VPAID_v2.0	

Receive VPAID event… …triggers VAST TrackingEvent
AdInteraction -

AdUserAcceptInvitation,
AdUserMinimize,
AdUserClose

acceptInvitation,
collapse,
close

AdPaused,
AdPlaying

pause,
resume

AdLog -

AdError error (with error code 901, as noted in VAST 3.0)
Table 2.6.3: VPAID/VAST Tracking Event Map

2.5.4 How to handle VPAID clicks in VAST context
The following logic determines how the video player should respond to clicks:

• The event.data.url is optional
• If event.data.playerHandles is true and e.data.url is:

a. Not defined: then the video player must use the VAST element,
VideoClicks/ClickThrough.

b. Defined: then the video player must use event.data.url.
• If event.data.playerHandles is false, then the video player doesn’t open

the landing page URL. The ad unit is responsible for opening the landing page URL in
a new window in this case.

Note: Regardless of the state of the event.data.handles, the video player must
request the resource specified by the URIs in the <VideoClicks> and
<ClickTracking> elements of VAST when it receives an AdClickThru VPAID event.

2.5.5 How to Interpret the VAST Linear/Duration Element
VAST doesn’t support interactive ad properties like the variable duration supported in VPAID
ad units that can change in response to user interaction. When a VPAID ad unit has variable
duration, the Linear/Duration element in VAST should be identified as the duration of
the interactive ad unit before any user interaction.

• In VPAID 1.0, the value of Linear/Duration element in VAST should use the
value of the VPAID property, adRemainingTime, collected at the time of the
AdStarted event (before user interaction).

• In VPAID 2.0, use the VPAID property, adDuration, instead.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 17	 VPAID_v2.0	

3 VPAID Protocol Details
VPAID protocols enable the video player and the ad unit to communicate the state of the ad
playback and include methods, properties and events.

The diagram below provides an example of how methods and events are used in sequence by
the ad unit and video player. The video player on the left of the diagrams makes calls (red) to
the ad unit on the right. The ad unit responds by dispatching events (teal) to the video player.
Sometimes, the video player checks (or “gets”) ad unit properties (yellow) and uses the
information to modify its UI or manage content video playback.

Whenever the video player must wait for the ad unit to respond, the ad unit may take too long
to send the appropriate event. In each of these cases, the video player should implement
timeout instructions for how to respond in the absence of an expected ad unit response. Please
see 0

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 18	 VPAID_v2.0	

Error Handling and Timeouts for more information on timeouts.

The following sections provide descriptions for all VPAID protocols.

3.1 Methods
All methods are called by the video player on the ad unit’s VPAID member property object.

The video player must refrain from calling any methods (besides handshakeVersion()
or initAd()) on the ad unit or access any properties until after the AdLoaded event has
been dispatched. The ad unit may not be able to provide any information or response until
after the ad unit has loaded and AdLoaded has been dispatched.

3.1.1 handshakeVersion
handshakeVersion(playerVPAIDVersion : String) : String

The video player calls handshakeVersion immediately after loading the ad unit to indicate to
the ad unit that VPAID will be used. The video player passes in its latest VPAID version string.
The ad unit returns a version string minimally set to “1.0”, and of the form “major.minor.patch”
(i.e. “2.1.05”). The video player must verify that it supports the particular version of VPAID or
cancel the ad.

In VPAID 2.0, updates were made with support of version 1.0 and later in mind. Video players
of version 2.0 should correctly display ads of version 1.0 and later, and video players of 1.0
and later should be able to display ads of version 2.0, but not all features will be supported.
Testing should included ad play in different version environments to verify any compatibility
issues.

Static interface definition implementations may require an external agreement for version
matching, in which case the handshakeVersion method call isn’t necessary. However, when
dynamic languages are used, the ad unit or the video player can adapt to match the other’s
version if necessary. Dynamic implementations may use the handshakeVersion method call to
determine if an ad unit supports VPAID. A good practice is to always call handshakeVersion
even if the version has been coordinated externally.

3.1.2 initAd()
initAd(width : Number, height : Number, viewMode : String, desiredBitrate : Number,
[creativeData : String], [environmentVars : String]) : void

After the ad unit is loaded and the video player calls handshakeVersion, the video player calls
initAd() to initialize the ad experience. The video player may preload the ad unit and
delay calling initAd() until nearing the ad playback time; however, the ad unit does not
load its assets until initAd() is called. Once the ad unit’s assets are loaded, the ad unit
sends the AdLoaded event to notify the video player that it is ready for display. Receiving the
AdLoaded response indicates that the ad unit has verified that all files are ready to execute.

Parameters used in the initAd() method:

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 19	 VPAID_v2.0	

• width: indicates the available ad display area width in pixels
• height: indicates the available ad display area height in pixels
• viewMode: indicates either “normal”, “thumbnail”, or “fullscreen” as the view mode

for the video player as defined by the publisher. Default is “normal”.
• desiredBitrate: indicates the desired bitrate as number for kilobits per second

(kbps). The ad unit may use this information to select appropriate bitrate for any
streaming content.

• creativeData: (optional) used for additional initialization data. In a VAST context,
the ad unit should pass the value for either the Linear or Nonlinear AdParameter
element specified in the VAST document.

• environmentVars: (optional) used for passing implementation-specific runtime
variables. Refer to the language specific API description for more details.

3.1.3 resizeAd()
resizeAd(width : Number, height : Number, viewMode : String) : void

The resizeAd() method is only called when the video player changes the width and
height of the video content container, which prompts the ad unit to scale or reposition. The ad
unit then resizes itself to a width and height that is equal to or less than the width and height
supplied by the video player. Once resized, the ad unit writes updated dimensions to the
adWidth and adHeight properties and sends the AdSizeChange event to confirm that
it has resized itself.

Calling resizeAd() is solely for prompting the ad to scale or reposition. Use expandAd() to
prompt the ad unit to extend additional creative space.

The parameters for this method call are:

• Width/Height: The maximum display area allotted for the ad. The ad unit must
resize itself to a width and height that is within the values provided. The video player
must always provide width and height unless it is in fullscreen mode. In fullscreen
mode, the ad unit can ignore width/height parameters and resize to any dimension.

• ViewMode: Can be one of “normal” “thumbnail” or “fullscreen” to indicate the
mode to which the video player is resizing. Width and height are not required when
viewmode is fullscreen.

By using the resizeAd() method to resize, the video player enables the ad unit to resize
itself and report its dimensions to the video player. This method is preferred over the video
player using its own technology to set the ad size upon video player resize. In fact, the video
player should never set the width and height properties of the ad unit. Instead, the video
player can get the adWidth and adHeight properties to verify that the ad unit has resized
itself to within the supplied dimensions.

3.1.4 startAd()
startAd() : void

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 20	 VPAID_v2.0	

startAd() is called by the video player when the video player is ready for the ad to
display. The ad unit responds by sending an AdStarted event that notifies the video player
when the ad unit has started playing. Once started, the video player cannot restart the ad unit
by calling startAd() and stopAd() multiple times.

3.1.5 stopAd()
stopAd() : void

The video player calls stopAd() when it will no longer display the ad or needs to cancel
the ad unit. The ad unit responds by closing the ad, cleaning up its resources and then sending
the AdStopped event. The process for stopping an ad may take time. Please see section 0

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 21	 VPAID_v2.0	

Error Handling and Timeouts for more information on error reporting and timeouts.

3.1.6 pauseAd()
pauseAd() : void

The video player calls pauseAd() to prompt the ad unit to pause ad display. The ad unit
responds by suspending any audio, animation or video and then sending the AdPaused
event. Instead of simply stopping animation and perhaps dimming display brightness, the ad
unit may choose to remove UI elements. Once AdPaused is sent, the video player may hide
the ad by adjusting the visibility setting for the display container. If the video player does not
receive the AdPaused event after a pauseAd() call, then either the ad unit cannot be
paused or it failed to send the AdPaused event. In either case, the video player should treat
the lack of response as a failed attempt to pause the ad.

3.1.7 resumeAd()
resumeAd() : void

Following a call to pauseAd(), the video player calls resumeAd() to continue ad
playback. The ad unit responds by resuming playback and sending the AdPlaying event to
confirm. If the video player does not receive the AdPlaying event after a resumeAd()
call, then either the ad unit cannot resume play or it failed to send the AdPlaying event. In
either case, the video player should treat the lack of response as a failed attempt to initiate
resumed playback of the ad.

3.1.8 expandAd()
expandAd() : void

The video player calls expandAd() when the timing is appropriate for an expandable ad
unit to play at additional interactive ad space, such as an expanding panel. The video player
may use this call when it provides an “Expand” button that calls expandAd() when clicked.
The ad unit responds by setting the adExpanded property to true and dispatching the
AdExpandedChange event, to confirm that the expandAd() call caused a change in
behavior or appearance of the ad.

3.1.9 collapseAd()
collapseAd() : void

When the ad unit is in an expanded state, the video player may call collapseAd() to
prompt the ad unit to retract any extended ad space. The ad unit responds by setting the
adExpanded property to false and dispatching the AdExpandedChange event, to
confirm that the collapseAd() call caused a change in behavior or appearance of the
ad.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 22	 VPAID_v2.0	

The video player can verify that the ad unit is in an expanded state by checking the value of
the adExpanded property at any time. The ad unit responds by restoring ad dimensions to
its smallest width and height settings and setting its adExpanded property to “false.”

The expectation is that the smallest UI size should have the least visible impact on the user, for
best user-experience. Therefore, if the ad unit has multiple collapsed states, such as a
minimized “pill” and a larger click to video banner state (see expandAd() for more
details), then the collapseAd() call should result in the minimized “pill” state. Ad
designers should condider implementing both collapsed states in all of their video ads for best
user-experience. However, only one collapsed state is required.

Note: If the video player does not call collapseAd(), and the ad unit instead initiates a
collapse on its own by setting adExpanded to false and sending the
AdExpandedChange event, then the ad is free to choose any collapsed state it supports
and not necessarily the smallest UI size.

3.1.10 skipAd()
skipAd() : void

The skipAd() method is new in VPAID 2.0.

This method supports skip controls that the video player may implement. The video player calls
skipAd() when a user activates a skip control implemented by the video player. When
called, the ad unit responds by closing the ad, cleaning up its resources and sending the
AdSkipped event.

The player should check the ad property ‘adSkippableState’ before calling
adSkip(). adSkip() will only work if this property is set to true. If player calls
adSkip() when the ‘adSkippableState’ property is set to false, the ad can ignore
the skip request.

The process for stopping an ad may take time. Please see section 3.4 Error Handling and
Timeouts for more information on error reporting and timeouts.

An AdSkipped event can also be sent as a result of a skip control in the ad unit and the
video player should handle it the same way it handles an AdStopped event. If a skip control
in the ad unit triggers the AdSkipped event, the video player may also send an
AdStopped event to support video players using an earlier version of VPAID. The
AdStopped event sent right after an AdSkipped event can be ignored in video players
using VPAID 2.0 or later.

Also, if the VPAID version for the ad unit precedes version 2.0, the ad unit will not
acknowledge a skipAd() method call. Skip controls in the video player should use the
stopAd() method to close skipped ads that use earlier versions of VPAID.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 23	 VPAID_v2.0	

3.2 Properties
The video player can access all properties on the ad unit’s VPAID member property object. If
the property is a get property, the ad unit writes to the property and the video player reads
from the property. If the property is set property, the video player writes to the property and
the ad unit reads from the property.

3.2.1 adLinear
get adLinear : Boolean

The adLinear Boolean indicates whether the ad unit is in a linear (true) or non-linear (false)
mode of operation. The adLinear property should only be accessed after the ad unit has
dispatched the AdLoaded event or after an AdLinearChange event.

The adLinear property affects the state of video content. When set to true, the video player
pauses video content. If set to true initially and the ad unit is designated as a pre-roll (defined
externally), the video player may choose to delay loading video content until ad playback is
nearly complete.

3.2.2 adWidth
get adWidth : Number

The adWidth property is new to VPAID 2.0.

The adWidth property provides the ad’s width in pixels and is updated along with the
adHeight property anytime the AdSizeChange event is sent to the video player, usually
after the video player calls resizeAd(). The ad unit may change its size to width and
height values equal to or less than the values provided by the video player in the Width and
Height parameters of the resizeAd() method. If the ViewMode parameter in the
resizeAd() call is set to “fullscreen,” then the ad unit can ignore the Width and Height
values of the video player and resize to any dimension. The video player may use adWidth
and adHeight values to verify that the ad is appropriately sized.

Note: adWidth value may be different than resizeAd() values
The value for the adWidth property may be different from the width value that the video
player supplies when it calls resizeAd(). The resizeAd() method provides the video
player’s maximum allowed value for width, but the adWidth property provides the ad’s
actual width, which must be equal to or less than the video player’s supplied width.

3.2.3 adHeight
get adHeight : Number

The adHeight property is new to VPAID 2.0.

The adHeight property provides the ad’s height in pixels and is updated along with the
adWidth property anytime the AdSizeChange event is sent to the video player, usually

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 24	 VPAID_v2.0	

after the video player calls resizeAd(). The ad unit may change its size to width and
height values equal to or less than the values provided by the video player in the Width and
Height parameters of the resizeAd() method. If the ViewMode parameter in the
resizeAd() call is set to “fullscreen,” then the ad unit can ignore the Width and
Height values of the video player and resize to any dimension. The video player may use
adWidth and adHeight values to verify that the ad is appropriately sized.

Note: adHeight values may be different than resizeAd() values
The value for the adHeight property may be different from the height value that the video
player supplies when it calls resizeAd(). The resizeAd() method provides the video
player’s maximum allowed value for height, but the adHeight property provides the ad’s
actual height, which must be equal to or less than the video player’s supplied height.

3.2.4 adExpanded
get adExpanded : Boolean

The adExpanded Boolean value indicates whether the ad unit is in a state where additional
portions it occupies more UI area than its smallest area. If the ad unit has multiple collapsed
states, all collapsed states show adExpanded being false. There can only be one expanded
state for the creative, which for a non-linear ad is usually the largest possible size for the ad
unit and may include a linear mode of operation (though setting adExpanded to true does
NOT imply that the ad unit is in linear mode).

Specifically, a non-linear ad can support one or more collapsed sizes that allow users to view
video content reasonably unimpeded. One example of a larger collapsed state is where a
nonlinear overaly typically displays across the lower fifth of the video display area. A
secondary, smaller collapsed state, often called a “pill” state, might display as a small overlay
button with a visible call-to-action.

The video player can check the adExpanded property at any time. Use the
AdExpandedChange event to indicate that the expanded state has changed. If ad is
statically sized adExpanded is set to false.

3.2.5 adSkippableState
get adSkippableState : boolean

The adSkippableState property is new to VPAID 2.0.

Common to skippable ads is a timeframe for when they’re allowed to be skipped. For
example, some ads may only be skipped a few seconds after the ad has started or may not
allow the ad to be skipped as it nears the end of playback.

The adSkippableState enables advertisers and publishers to align their metrics based
on what can and cannot be skipped.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 25	 VPAID_v2.0	

The default value for this property is false. When the ad reaches a point where it can be
skipped, the ad unit updates this property to true and sends the
AdSkippableStateChange event. The video player can check this property at any
time, but should always check it when the AdSkippableStateChange event is received.

3.2.6 adRemainingTime
get adRemainingTime : Number

The video player may use the adRemainingTime property to update player UI during ad
playback, such as displaying a playback counter or other ad duration indicator. The
adRemainingTime property is provided in seconds and is relative to the total duration
value provided in the adDuration property.

The video player may check the adRemainingTime property at any time, but should
always check it when receiving an AdRemainingTimeChange (in VPAID 1.0) or
adDurationChange event (in VPAID 2.0). The ad unit should update this property to be
current within one second of actual remain time and can be updated once per second during
normal playback or up to four times per second (to maintain optimum performance) so that the
video player can keep its UI in synch with actual time remaining.

If the property is not implemented, the ad unit returns a value of -1. A value of -2 is returned
when time remaining is unknown. Unknown remaining time usually indicates that a user is
actively engaged with the ad.

3.2.7 adDuration
get adDuration : Number

The adDuration property is new to VPAID 2.0.

An ad unit may provide the adDuration property to indicate the total duration of the ad,
relative to the current state of the ad unit. When user interaction changes the total duration of
the ad, the ad unit should update this property and send the adDurationChange event.
The initial value for adDuration is the expected duration before any user interaction.

The video player may check the adDuration property at any time, but should always
check it when receiving an adDurationChange event.

If duration is not implemented, the ad unit returns a -1 value. If the duration is unknown, the ad
unit returns a -2. Unknown duration is typical when the user has engaged the ad.

3.2.8 adVolume
get adVolume : Number
set adVolume : Number

The video player uses the adVolume property to either request the current value for ad
volume (get) or change the value of the ad unit’s volume (set). The adVolume value is

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 26	 VPAID_v2.0	

between 0 and 1 and is linear, where 0 is mute and 1 is maximum volume. The video player is
responsible for maintaining mute state and setting the ad volume accordingly. If volume is not
implemented as part of the ad unit, -1 is returned as the value for adVolume when the video
player attempts to get adVolume. If set is not implemented, the video player does nothing.

3.2.9 adCompanions
get adCompanions : String

The adCompanions property is new to VPAID 2.0.

Companion banners are ads that display outside the video player area to reinforce the
messaging provided in the video ad unit. In some cases, a VPAID ad unit may request ads
from other ad servers after initAd()has been called, and makes a decision about which
ad it will display, which may or may not include ad companions. For example, a client-side
yield management SDK may wrap itself in a VPAID ad when a native SDK integration might
be cumbersome. In this scenario, the ad server that served the initial VAST response may not
know which ad will be displayed, and therefore the VAST response itself does not include ad
companions.

VPAID 2.0 enables an ad server to serve a VAST response which has no companions, but
which does have a VPAID ad unit that pulls in ad companions dynamically based on the ad-
serving situation. The video player can then check the VPAID ad unit for ad companions when
the VAST response has none.

The video player is not required to poll this property, and because ad companion information
from the VAST response takes precedence over VPAID ad companions, the video player
should only access this property when the VAST response is absent of any ad companions.

The value of this property is a String that provides ad companion details in VAST 3.0 format
for the <CompanionAds> element, and should contain all the media files and details for
displaying the ad companions (i.e. the format should be of an InLine response and not in
Wrapper format). Also, the value should only include details within the <CompanionAds>
element and not an entire VAST response. If any XML elements are included outside of the
<CompanionAds> element, they must be ignored, including any <Impression>
elements that might have been included. However, VAST companion ad
<TrackingEvents> elements for <Tracking event=”creativeView”> must
be respected.

If the video player calls for adCompanions(), it must wait until after receiving the VPAID
AdLoaded event, and any companions provided must not display until after the VPAID
AdImpression event is received. Delaying companion display until after the
AdImpression event prevents display of any companion banners in the case where the
video ad fails to register an impression.

If this property is used but no Companions are available the property should return an empty
string “”.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 27	 VPAID_v2.0	

Example of a basic <AdCompanions> element from VAST as it may be passed in the
VPAID adCompanions property:

<AdCompanions>
 <Companion>
 <StaticResource type=”image/jpg”>
 <![CDATA[

http://AdServer.com/120x60companion.jpg
]>

 </StaticResource>
 <TrackingEvents>
 <Tracking event=creativeView>
 <![CDATA[
 http://AdServer.com/creativeview.jpg
]>
 </Tracking>
 </TrackingEvents>
 </Companion>
</AdCompanions>

3.2.10 adIcons
get adIcons : Boolean

The adIcon property is new to VPAID 2.0.

Several initiatives in the advertising industry involve using an icon that overlays on top of an ad
creative to provide some extended functionality such as to communicate with consumers or
otherwise fulfill requirements of a specific initiative. Often this icon and its functionality may be
provided by a vendor, and is not necessarily served by the ad server or included in the
creative itself.

One example of icon use is for compliance to certain Digital Advertising Alliance (DAA) self-
regulatory principles for Online Behavioral Advertising (OBA). If you would like more
information about the OBA Self Regulation program, please visit http://www.aboutads.info.

The video player can use the adIcons property to avoid displaying duplicate icons over any
icons that might be provided in the ad unit. Until the industry provides more guidance on how
to pass metadata using common ad-serving protocols, this property is limited to a Boolean
response. The default value is False. If one or more ad icons are present within the ad, the
value returned is True. When set to True, the video player should not display any ad icons
of its own.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 28	 VPAID_v2.0	

3.3 Dispatched Events
All events are dispatched from the ad unit to the video player, usually in response to method
calls made by the video player. Event handlers in the video player may in turn call ad
methods. Video players must be written in a way to prevent a stack overflow caused by calling
back into methods as a result of an event.

The ad unit should avoid dispatching any events before AdLoaded is sent or after
AdStopped or AdSkipped is sent.

3.3.1 AdLoaded
When the video player calls the initAd() method, the ad unit can begin loading assets.
Once loaded and ready for display, the ad dispatches the AdLoaded event. No UI elements
should be visible before AdLoaded is sent, but sending AdLoaded indicates that the ad
unit has verified that all files are ready to execute. Also, if initAd() was called, and the ad
unit is unable to display and/or send AdLoaded, then AdError should be dispatched.

3.3.2 AdStarted
The AdStarted event is sent by the ad unit to notify the video player that the ad is
displaying and is a response to the startAd() method.

3.3.3 AdStopped
The AdStopped event is sent by the ad unit to notify the video player that the ad has
stopped displaying and all ad resources have been cleaned up. This event is only for
responding the stopAd() method call made by the video player. It should never be used to
initiate the ad unit’s end or used to inform the video player that it can now call stopAd().

3.3.4 AdSkipped
The AdSkipped event is sent by the ad unit to notify the video player that the ad has been
skipped, stopped displaying and all ad resources have been cleaned up.

The AdSkipped event can be sent in response to the skipAd() method call or as a result
of a skip control activated within the ad unit (rather than in the video player).

In response to a skipAd() method call, the ad unit must stop ad play, clean up all
resources, and send the AdSkipped event. If a skip control is activated within the ad unit,
the ad unit must stop ad play, clean up all resource, and send the AdSkipped event
followed by the AdStopped event. Sending the AdStopped event for skip controls
activated in the ad unit ensures that video players using earlier versions of VPAID receive
notice that the ad has stopped playing.

3.3.5 AdSkippableStateChange
AdSkippableStateChange is new to VPAID 2.0.

When an ad unit only allows its creative to be skipped within a specific time frame, it can use

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 29	 VPAID_v2.0	

the AdSkippableStateChange event to prompt the video player to check the value of
the adSkippableState property, which keeps the video player updated on when the ad
can be skipped and when it cannot be skipped.

3.3.6 AdSizeChange
AdSizeChange is new to VPAID 2.0

The AdSizeChange event is sent in response to the resizeAd() method call. When the
video player resizes, it notifies the ad unit so that the ad unit can also scale to maintain the
same ad space ratio that it had relevant to the previous video player size.

When the video player calls resizeAd(), the ad unit must scale its width and height value
to equal or less than the width and height value supplied in the video player call. If the video
player doesn’t provide width and height values (as in fullscreen mode), then the ad unit can
resize to any dimension.

Once the ad unit has resized itself, it writes width and height values to the adWidth and
adHeight properties, respectively. The AdSizeChange event is then sent to confirm that
the ad unit has resized itself.

See resizeAd(), adWidth and adHeight for more information.

3.3.7 AdLinearChange
The AdLinearChange event is sent by the ad unit to notify the video player that the ad unit
has changed playback mode. To find out the current state of the ad unit’s linearity, the video
player must use the get adLinear property and update its UI accordingly. See the adLinear
property for more information.

3.3.8 AdDurationChange
AdDurationChange is new to VPAID 2.0.

The duration for some video ads can change in response to user interaction or other factors.
When the ad duration changes, the ad unit updates the values of the adDuration and
adRemainingTime properties and dispatches the AdDurationChange event,
notifying the video player that duration has changed. The video player can then get
adDuration and adRemainingTime to update its UI, such as the duration indicator, if
applicable.

During normal playback, adDurationChange should not be dispatched unless the total
duration of the ad changes.

3.3.9 AdExpandedChange
When the expanded state of the ad changes, the ad unit must update the adExpanded
property and dispatch the AdExpandedChange event to notify the video player of the
change. The video player responds by using the get adExpanded property to update its UI

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 30	 VPAID_v2.0	

accordingly. An AdExpandedChange event may be triggered by the expandAd()
method.

The AdExpandedChange event is only for notifying the player of a change in ad unit
expansion, such as the expand or collapse of an interactive panel. To dispatch a change in
standard display size, please use AdSizeChange.

3.3.10 AdRemainingTimeChange (Deprecated in 2.0)
The AdRemainingTimeChange event is still supported in order to accommodate ads
and video players using VPAID 1.0; however, in 2.0 versions, please use
AdDurationChange.

The AdRemainingTimeChange event is sent by the ad unit to notify the video player that
the ad’s remaining playback time has changed. The video player may get the
adRemainingTime property and update its UI accordingly.

Upon initial duration change, the ad unit should update the adRemainingTime property
and send the AdRemainingTimeChange event at least once per second but no more
than four times per second (to maintain optimum performance) so that the video player can
keep its UI in synch with actual time remaining.

3.3.11 AdVolumeChange
If the ad unit supports volume, any volume changes are updated in the adVolume property
and the AdVolumeChange event is dispatched to notify the video player of the change.
The video player may then use the get adVolume property and update its UI accordingly.

3.3.12 AdImpression
The AdImpression event is used to notify the video player that the user-visible phase of the
ad has begun. The AdImpression event may be sent using different criteria depending on
the type of ad format the ad unit is implementing.

For a linear mid-roll ad, the impression should coincide with the AdStart event. However, for a
non-linear overlay ad, the impression will occur when the invitation banner is displayed, which
is normally before the ad video is shown. This event matches that of the same name in Digital
Video In-Stream Ad Metrics Definitions, and must be implemented to be IAB compliant.

3.3.13 AdVideoStart, AdVideoFirstQuartile, AdVideoMidpoint,
AdVideoThirdQuartile, AdVideoComplete

These five events are sent by the ad unit to notify the video player of the ad unit’s video
progress and are used in VAST under the same event names. Definitions can be found under
“Percent complete” events in Digital Video In-Stream Ad Metrics Definitions. These events must
be implemented for ads to be IAB compliant, but only apply to the video portion of the ad
experience, if any.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 31	 VPAID_v2.0	

3.3.14 AdClickThru
The AdClickThru event is sent by the ad unit when a clickthrough occurs. Three
parameters can be included to give the video player the option for handling the event.

Three parameters are available for the event:

• String url: enables the ad unit to specify the clickthrough url
• String Id: used for tracking purposes
• Boolean playerHandles: indicates whether the video player or the ad unit handles

the event. Set to true, the video player opens the new browser window to the URL
provided. Set to false, the ad unit handles the event.

The AdClickThru event is included under the same name in Digital Video In-Stream Ad
Metrics Definitions and must be implemented to be IAB compliant.

3.3.15 AdInteraction
AdInteraction is new in VPAID 2.0.

This event was introduced to capture all user interactions under one metric aside from any
clicks that result in redirecting the user to specified site. AdInteraction events might
include hover-overs, clicks that don’t result in a ClickThru, click-and-drag interactions, and
the events described in section 3.3.16. While AdInteraction does not replace any other
metrics, it can be used in addition to other metrics. Keep in mind that recording both an
AdUserMinimize and an AdInteraction for the same event is just one event with
two names. Other custom interactions, such as “Dealer Locator” for example don’t exist in any
VPAID events, so it could be recorded under the AdInteraction event.

The AdInteraction event is sent by the ad unit to indicate any interaction with the ad
EXCEPT for ad clickthroughs. An ad clickthrough is indicated using the AdClickThru event
described in section 3.3.14.

One parameter is available for the event:

• String Id: used for tracking purposes

3.3.16 AdUserAcceptInvitation, AdUserMinimize, AdUserClose
The AdUserAcceptInvitation, AdUserMinimize and AdUserClose events
are sent by the ad unit when they meet requirements of the same names as set in Digital Video
In-Stream Ad Metrics Definitions. Each of these events indicates user-initiated action that the ad
unit dispatches to the video player. The video player may choose to report these events
externally, but takes no other action.

3.3.17 AdPaused, AdPlaying
The AdPaused and AdPlaying events are sent in response to the pauseAd() and
resumeAd() method calls, respectively, to confirm that the ad has either paused or is

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 32	 VPAID_v2.0	

playing. Sending AdPaused indicates that the ad has stopped all audio and any animation
in progress. Other settings, such as adjusting the ad’s visibility or removing ad elements from
the UI, may be implemented until resumeAd() is called. Sending AdPlaying indicates
that the ad unit has resumed playback from the point at which it was paused. See

pauseAd() and resumeAd() method descriptions for more detail.

3.3.18 AdLog
The AdLog event is optional and can be used to relay debugging information.

One parameter is available for this event:

• String Id: used for tracking purposes

3.3.19 AdError
The AdError event is sent when the ad unit has experienced a fatal error. Before the ad unit
sends AdError it must clean up all resources and cancel any pending ad playback. The
video player must remove any ad UI, and recover to its regular content playback state. The
String message parameter can be used to provide more specific information to the video
player.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 33	 VPAID_v2.0	

3.4 Error Handling and Timeouts
Any fatal errors detected by the ad unit initiates an AdError event that cancels ad playback
and returns the video player to content playback state. Errors should only be sent through the
AdError event and no uncaught exceptions should ever be thrown.

The video player should also implement timeout mechanisms anywhere an ad response is
expected and not received.

Recovery actions are provided for each of the timeout situations below:

• Delay of request of ad file to ad file successfully loaded: cancel ad load
and move on to the next ad or return to regular content playback.

• Calling initAd() and not receiving AdLoaded event: remove ad from UI
and delete all ad resources. Move on to next ad or return to regular content playback.

• Calling startAd() and not receiving AdStarted event: call stopAd().
If no response is received, remove the ad from the UI and delete all resources. Move
on to the next ad or return to regular content playback.

• Receiving AdLinearChange event with adLinear set to true but
never receiving AdLinearChange event with adLinear set to false
(excluding ad pause/resume time): call stopAd(). If no response is
received, remove the ad from the UI and delete all resources. Move on to the next ad
or return to regular content playback.

• Calling stopAd() and not receiving AdStopped event: remove the ad
from the UI and delete all resources. Move on to the next ad or return to regular
content playback.

The amount of time to allot for a timeout is up to the publisher and should be discussed with
partners and vendors, but allowing more than a few seconds before moving on may cause the
publisher to miss opportunities for executing alternative ads within the allotted ad space.

4 Security
VPAID was designed to allow for unidirectional scripting, where possible. All VPAID methods
and properties are on the VPAID member of the ad object, allowing scripting from the video
player to the ad unit. However, the ad unit can only send notification of an event to the video
player. For client platforms such as Flash, this allows unidirectional scripting from video player
to ad unit but prevents the ad unit from scripting into the video player or using a JavaScript
bridge to attack the web page.

In some cases a publisher may allow scripting to the video player using ExternalInterface
(allowScriptAccess=”always”). Allowing script access may be used to support verification
services because it allows for transparency around the context in which the ad is being served.
However, allowing scripting from the ad to the video player can cause discrepancies in

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 34	 VPAID_v2.0	

publisher data and poses a security risk. Publishers and advertisers should discuss script access
as part of campaign setup.

For each implementation technology represented in sections 6-8, a security subsection
provides details necessary for secure implementation.

5 Example Ads and the VPAID
Process

To show how VPAID works in different video ad types, we’ve represented the VPAID process
for four common ad types:

• Clickable Pre-Roll
• Companion Banner (achieved without VPAID)
• Overlay Banner
• Overlay Banner with Click-to-Linear Video Ad

5.1 Clickable Pre-Roll
Clickable pre-roll ads are used to enable an
interactive overlay for a video ad served in advance
of video content. In a clickable pre-roll ad, the viewer
can interact with the overlay image or text and
ultimately be redirected to the advertiser’s specified
webpage.

VPAID Process for a Clickable Pre-Roll Ad:

1. Video player calls handshakeVersion(“2.0”).
a. Ad unit returns ”2.0.”

2. Video player calls initAd(500, 400, “normal”, 500).
a. Ad unit loads and returns AdLoaded.

3. Video player calls startAd().
a. Ad unit starts ad display and returns AdStarted.

4. Video player gets adLinear.
a. Video player sees that the value is true.
b. Video player delays loading/displaying content video.

5. Video player gets adDuration, sets adVolume, manages playback with calls to
pauseAd(), resumeAd(), resizeAd(), etc. *

a. Ad unit responds appropriately to each call.
b. When ad play is complete, ad unit sends AdStopped.

6. Video player buffers and plays content video.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 35	 VPAID_v2.0	

* Without VPAID, the interactivity offered in step 5 is only possible with a custom solution. The
adDuration property in VPAID supports variable duration resulting from interaction. The
resizeAd() method ensures predictable ad size scaling. And the set adVolume
property enables control over ad volume.

5.2 Companion Banner
The companion ad format is used with linear ads to
provide an interactive ad outside the video player
(shown below the video player in the example to the
right).

The companion banner information can be provided
either in the initial VAST response, or by using the
VPAID adCompanions() property. See section
3.2.9 for more information.

5.3 Overlay Banner
An overlay banner is an ad that displays over
content video during video playback. The video
player may control the designated ad display area
dimensions, position and display timing.

VPAID Process for Overlay Banners:

1. Video player calls handshakeVersion(“2.0”).
a. Ad unit returns ”2.0.”

2. Video player calls initAd(500, 400, “normal”,
500).

a. Ad unit loads and returns AdLoaded.
3. Video player calls startAd().

a. Ad unit starts ad display and returns AdStarted.
4. Video player gets adLinear.

a. Video player sees that the value is false.
b. Video player begins loading/displaying content video.
c. Video player may begin playing content video when ready.

5. Video player calls stopAd() when ad display time has elapsed.
a. Ad unit stops ad play, cleans up resources and responds with AdStopped.

6. Content video continues to play.

Without VPAID, the overlay banner can be executed using a non-linear ad with defined
duration in which the video player defines ad position. However, interaction is limited unless

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 36	 VPAID_v2.0	

VPAID or some custom solution for the ad unit and video player is implemented. The example
below shows how VPAID enables interactivity for the overlay banner.

5.4 Overlay Banner with Click-to-Linear Video Ad
VPAID enables a rich, interactive experience in video overlay
banners. As in the standard overlay example on the previous
page, the ad displays over the content video while the
content video is playing. However, VPAID enables the video
player to stop its video content playback when a viewer
clicks the ad so that the ad unit can initiate a linear video ad
or expand for a broader engagement opportunity. When the
linear ad or expanded portion has completed, the content
video resumes playback.

VPAID Process for a Click-to-Linear Video Ad:

1. Video player calls handshakeVersion(“2.0”).
a. Ad unit returns ”2.0.”

2. Video player calls initAd(500, 400, “normal”, 500).
a. Ad unit loads and returns AdLoaded.

3. Video player calls startAd().
a. Ad unit starts ad display and returns AdStarted.

4. Video player gets adLinear.
a. Video player sees that the value is false.
b. Video player delays loading content video.

5. If viewer clicks to expand the ad:
a. Ad unit sets adLinear = true and sends AdLinearChange.
b. Ad may set adExpanded = true and send AdExpandedChange
c. Ad sends AdInteraction.
d. Video player pauses content video.
e. The video ad plays and completes.
f. Ad unit sets adExpanded = false and sends AdExpandedChange.
g. Ad unit sets adLinear = false and sends AdLinearChange.
h. Video player continues content video playback

6. Video player calls stopAd() when ad display time has elapsed
a. Ad unit sends AdStopped.
b. Video player continues content video playback.

Without VPAID (or a custom solution), this interaction is not possible. Other interactions, such
expanding the ad upon click and variable duration dependent on interaction, are also

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 37	 VPAID_v2.0	

enabled with VPAID. Creative video ad development is encouraged with VPAID as long as
guidelines are respected along with other applicable digital video guidelines listed on page 7.

6 ActionScript 3 Implementation
This section provides information for how to implement VPAID using ActionScript 3. Also
included are details on using custom events and addressing security concerns.

6.1 API Specifics
The loaded ad .swf file should be loaded into its own ApplicationDomain and therefore
be treated as a *data type. Both the ad unit and the video player need their own VPAID
interface (IVPAID) definition since they both run in separate ApplicationDomains. The
interface cannot be shared.

The video player accesses VPAID by calling getVPAID on the ad object. For safety when
calling VPAID, the video player may wrap the returned *object with a class that implements
VPAID explicitly, as shown in the following example. The VPAID class must extend
EventDispatcher, and the video player should call addEventHandler on the
VPAID object using events with String names for the events listed in section 3.3.

To provide frame rate information (Stage.frameRate), use the environmentVars
paramenter in the initAd() method.

For more information on passing custom event information, please Custom Events in section
6.2 following the sample code below.

Sample code for implementing VPAID in ActionScript 3:

package
{
 public interface IVPAID
 {
 // Properties
 function get adLinear() : Boolean;
 function get adWidth() : Number
 function get adHeight() : Number
 function get adExpanded() : Boolean;
 function get adSkippableState() : Boolean;
 function get adRemainingTime() : Number;
 function get adDuration() : Number;
 function get adVolume() : Number;
 function get adCompanions() : String;
 function get adIcons() : Boolean;
 // Methods
 function handshakeVersion(playerVPAIDVersion : String) : String;
 function initAd(width : Number, height : Number, viewMode : String, desiredBitrate : Number, creativeData :
String=””, environmentVars : String=””) : void;
 function resizeAd(width : Number, height : Number, viewMode : String) : void;

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 38	 VPAID_v2.0	

 function startAd() : void;
 function stopAd() : void;
 function pauseAd() : void;
 function resumeAd() : void;
 function expandAd() : void;
 function collapseAd() : void;
 function skipAd() : void;
 }
}

package
{
 // Player wrapper for untyped loaded swf
 public class VPAIDWrapper extends EventDispatcher implements IVPAID
 {
 private var _ad:*;

 public function VPAIDWrapper(ad:*) {
 if(ad.hasOwnProperty('getVPAID'))
 _ad = ad.getVPAID();
 else
 _ad = ad;
 }

 // Properties
 public function get adLinear():Boolean {
 return _ad.adLinear;
 }
 public function get adWidth():Number {
 return _ad.adWidth;
 }
 public function get adHeight():Number {
 return _ad.adHeight;
 }
 public function get adExpanded():Boolean {
 return _ad.adExpanded;
 }
 public function get adSkippableState():Boolean {
 return _ad.adSkippableState;
 }
 public function get adRemainingTime():Number {
 return _ad.adRemainingTime;
 }
 public function get adDuration():Number{
 return _ad.adDuration;
 }
 public function get adVolume():Number {
 return _ad.adVolume;
 }
 public function set adVolume(value:Number):void {
 _ad.adVolume = value;
 }
 public function get adCompanions():String{
 return _ad.adCompanions;

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 39	 VPAID_v2.0	

 }

 // Methods
 public function handshakeVersion(playerVPAIDVersion : String):String {
 return _ad.handshakeVersion(playerVPAIDVersion);
 }
 public function initAd(width:Number, height:Number, viewMode:String, desiredBitrate:Number,
creativeData:String=””, environmentVars : String=””):void {
 _ad.initAd(width, height, viewMode, desiredBitrate, creativeData, environmentVars);
 }
 public function resizeAd(width:Number, height:Number, viewMode:String):void {
 _ad.resizeAd(width, height, viewMode);
 }
 public function startAd():void {
 _ad.startAd();
 }
 public function stopAd():void {
 _ad.stopAd();
 }
 public function pauseAd():void {
 _ad.pauseAd();
 }
 public function resumeAd():void {
 _ad.resumeAd();
 }
 public function expandAd():void {
 _ad.expandAd();
 }
 public function collapseAd():void {
 _ad.collapseAd();
 }
 public function skipAd():void {
 _ad.collapseAd();
 }

 // EventDispatcher overrides
 override public function addEventListener(type:String, listener:Function, useCapture:Boolean=false,
priority:int=0, useWeakReference:Boolean=false):void {
 _ad.addEventListener(type, listener, useCapture, priority, useWeakReference);
 }
 override public function removeEventListener(type:String, listener:Function,
useCapture:Boolean=false):void {
 _ad.removeEventListener(type, listener, useCapture);
 }
 override public function dispatchEvent(event:Event):Boolean {
 return _ad.dispatchEvent(event);
 }
 override public function hasEventListener(type:String):Boolean {
 return _ad.hasEventListener(type);
 }
 override public function willTrigger(type:String):Boolean {
 return _ad.willTrigger(type);
 }
 }

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 40	 VPAID_v2.0	

}

6.2 Custom events
As with the VPAID interface itself, event class definitions are not shared between the video
player and the ad unit. The following class definition can be defined in both the video player
and the ad unit, but since they are in separate ApplicationDomains it cannot be shared.

The ad unit must create a flash.events.Event derived class that implements a data property
getter as shown in the example below.

Two considerations should be noted when implementing VPAID:

• When defining the VPAIDEvent object, the “bubbles” attribute should be set to false
(as in the public function VPAIDEvent() near the bottom of the example provided).

• When listening for a VPAIDEvent, the listener can optionally call “stopPropagation”.

package
{
 import flash.events.Event;

 public class VPAIDEvent extends Event
 {
 public static const AdLoaded : String = "AdLoaded";
 public static const AdStarted : String = "AdStarted";
 public static const AdStopped : String = "AdStopped";
 public static const AdSkipped : String = "AdSkipped";
 public static const AdLinearChange : String = "AdLinearChange";
 public static const AdSizeChange : String = "AdSizeChange";
 public static const AdExpandedChange : String = "AdExpandedChange";
 public static const AdSkippableStateChange : String = "AdSkippableStateChange";
 public static const AdRemainingTimeChange : String = "AdRemainingTimeChange";
 public static const AdDurationChange : String = "AdDurationChange";
 public static const AdVolumeChange : String = "AdVolumeChange";
 public static const AdImpression : String = "AdImpression";
 public static const AdVideoStart : String = "AdVideoStart";
 public static const AdVideoFirstQuartile : String = "AdVideoFirstQuartile";
 public static const AdVideoMidpoint : String = "AdVideoMidpoint";
 public static const AdVideoThirdQuartile : String = "AdVideoThirdQuartile";
 public static const AdVideoComplete : String = "AdVideoComplete";
 public static const AdClickThru : String = "AdClickThru";
 public static const AdInteraction : String = "AdInteraction";
 public static const AdUserAcceptInvitation : String = "AdUserAcceptInvitation";
 public static const AdUserMinimize : String = "AdUserMinimize";
 public static const AdUserClose : String = "AdUserClose";
 public static const AdPaused : String = "AdPaused";
 public static const AdPlaying : String = "AdPlaying";
 public static const AdLog : String = "AdLog";
 public static const AdError : String = "AdError";

 private var _data:Object;

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 41	 VPAID_v2.0	

 public function VPAIDEvent(type:String, data:Object=null, bubbles:Boolean=false,
cancelable:Boolean=false) {
 super(type, bubbles, cancelable);
 _data = data;
 }
 public function get data():Object {
 return _data;
 }
 public function clone():Object {
 return new VpaidEvent(type, data, bubbles, cancelable);
 }
}
}
// sample ad dispatch call from a function within ad’s VPAID class
dispatchEvent(new VPAIDEvent(VPAIDEvent.AdStarted));
dispatchEvent(new VPAIDEvent(VPAIDEvent.AdClickThru,
 {url:myurl,id:myid,playerHandles:true}));

The video player uses addEventListener with a handler function that that receives an Object as
a parameter. To continue the above example:

public function onAdClickThru(event:Object) : void
{
 trace(“Ad url is: “ + event.data.url);
}
_VPAID.addEventListener(VPAIDEvent.AdClickThru, onAdClickThru);

6.3 Security
To implement unidirectional scripting in ActionScript 3, use
Security.allowDomain(“<playerdomain or *>”). The ad swf must also be served from a domain
where /crossdomain.xml allows the ad swf to be loaded by the video player domain or *. The
video player should load the ad swf into a separate security and application domain. The ad
unit SWF should not access the Stage. Special attention should be paid in the ad unit SWF for
handling ads that require JavaScript access via ExternalInterface: an AdError should be
thrown if this access is not allowed.

7 Silverlight Implementation
7.1 API Specifics
The Silverlight ad unit will expose the above APIs to support the communication from the video
player. As it’s not very easy to access getVPAID method on an ad unit, the ad unit will
implement “IVPAID” interface. The video player can determine if the ad unit implements
“IVPAID” interface and if it does, will understand that the ad unit is a VPAID compliant ad. A
video player/ad unit combination may decide that using VPAID is unsafe, but the
recommended way would be to use a type safe interface, which defines the above APIs. This

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 42	 VPAID_v2.0	

type safety can be achieved by using the binary IVPAID interface that the ad unit can
implement. The video player will also use this binary interface to check if the ad unit
implements the interface and thus can be sure that the ad unit is a VPAID compliant ad. More
information about this interface can be found
athttp://www.iab.net/iab_products_and_industry_services/508676/508950/vpaid).

Following is the interface which VPAID-compliant Silverlight ads will implement (based on
above explanation of VPAID.

public interface IVPAID {

 #region VPAID Methods

 string handshakeVersion(string version);
 void initAd(uint width, uint height, string viewMode, int desiredBitrate, string creativeData=””,
string environmentVars=””);
 void startAd();
 void stopAd();
 void resizeAd(uint width, uint height, string viewMode);
 void pauseAd();
 void resumeAd();
 void expandAd();
 void collapseAd();
 void skipAd();

 #endregion

 #region VPAID Properties

 bool adLinear { get; }
 unit adWidth { get; }
 unit adHeight { get; }
 bool adExpanded { get; }
 bool adSkippableState { get; }
 TimeSpan adRemainingTime { get; }
 TimeSpan adDuration { get; }
 string adCompanions { get; }
 float adVolume { get; set; }
 bool adIcons { get; }
 #endregion

 #region VPAID Events

 event EventHandler AdLoaded;
 event EventHandler AdStarted;
 event EventHandler AdStopped;
 event EventHandler AdSkipped;
 event EventHandler AdPaused;
 event EventHandler AdSizeChange;
 event EventHandler AdPlaying;
 event EventHandler AdExpandedChange;
 event EventHandler AdSkippableStateChange;

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 43	 VPAID_v2.0	

 event EventHandler AdLinearChange;
 event EventHandler AdVolumeChange;
 event EventHandler AdVideoStart;
 event EventHandler AdVideoFirstQuartile;
 event EventHandler AdVideoMidPoint;
 event EventHandler AdVideoThirdQuartile;
 event EventHandler AdVideoComplete;
 event EventHandler AdUserAcceptInvitation;
 event EventHandler AdUserClose;
 event EventHandler AdUserMinimize;
 event EventHandler<ClickThroughArgs> AdClickThru;
 event EventHandler<AdInteraction Args> AdInteraction;
 event EventHandler<StringEventArgs> AdError;
 event EventHandler<StringEventArgs> AdLog;
 event EventHandler AdDurationChange;
 event EventHandler AdRemainingTimeChange;
 event EventHandler AdImpression;

 #endregion
}

7.2 Custom Events

#region Event Argument classes

public class StringEventArgs : EventArgs {
 string Message { get; set; }
}

public class ClickThroughArgs : EventArgs {
 public string Url { get; set; }
 public string Id { get; set; }
 public bool PlayerHandles { get; set; }
}

#endregion

7.3 Security
The Silverlight ad XAP must be served from a domain where policy file allows the ad XAP to be
loaded by the video player domain or *.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 44	 VPAID_v2.0	

8 JavaScript Implementation
This section outlines JavaScript-based VPAID APIs that can be used by video player and in-
stream video ads to interact in a standard way, enabling interoperability between various
video player and ad unit implementations for HTML5 capable devices. The Javascript APIs
follow the same basic video player and ad unit interaction approach as of Flash™ and
Silverlight™ APIs. For example:

1. The video player is responsible for making the ad call and parsing of the ad xml
response from the ad server

2. The video player invokes a set of functions provided by the ad VPAID object

3. The ad unit fires events/callbacks for the major events in the ad unit and the video
player acts on them

4. The video player provides the ad unit with the location where it is supposed to render
itself in

All effort is made to keep the APIs, property, and event definitions consistent with the flash and
Silverlight specification, but there are few differences as mandated by the JavaScript language
and environment. These differences are described in the following section.

8.1 API Specifics

8.1.1 Methods
initAd()
 initAd(width : Number, height : Number, viewMode : String, desiredBitrate : Number,
creativeData : Object, environmentVars : Object) : void

• The basic use of initAd() and parameter is same as the AS3 and silverlight
implementation, but there are few differences:
◦ The 'creativeData' and 'environmentVars' arguments are Objects
◦ creativeData parameter is used for passing in additional ad initialization data,

specifically adParameters node of a VAST response.
◦ The 'environmentVars' object contains a reference, 'slot', to the HTML element

on the page in which the ad is to be rendered. The ad unit essentially gets
control of that element. See the following code example on how to set this
value.

◦ The 'environmentVars' object would contain a reference, 'videoSlot', to the
video element on the page where the ad video is to be rendered and a
boolean flag, ‘videoSlotCanAutoPlay’ indicating whether the ‘videoSlot’ is
capable of autoplaying. It is upto the player implementation to decide what
video element to pass to the ad. Two choices with associated tradeoffs are:
1. The player can pass the video element used for playing the content video.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 45	 VPAID_v2.0	

▪ This allows the ad unit and content videos to share the same video
element, allowing a consistent user experience between content and
ad playback including sharing of the control bar.

▪ This approach is similar to flash implementation.
▪ This also allows the ad implementer to get around the autoplay

limitation in iOS and Chrome mobile where video elements can't start
without user interaction

▪ In this case, boolean flag , ‘videoSlotCanAutoPlay’, should be set to
true.

2. The player can pass a video element different than what it used to play the
content video.
▪ The advantage of this choice is that player can pre-buffer the video

content to be played after the ad, potentially providing a better content
play experience.

▪ In this case, on iOS and Chrome mobile, the ad video will not
autoplay. For these devices, and any future devices with similar
restriction, boolean flag , ‘videoSlotCanAutoPlay’, should be set to
false.

▪ For the cases where ad video cannot autoplay, it is recommended that
the ad video be rendered with “poster” attribute and/or the ad video
is built such that the first frame is meaningful to the user.

Example code for populating ‘CreativeData’ and ‘EnvironmentVars’:

// Populating CreativeData - The AdParameters string should be extracted by parsing the VAST XML
CreativeData.AdParameters = “Linear/NonLinear AdParameter node from VAST without the
CDATA wrapper”;

 // Example assumes that ad is to be rendered within a div with id 'videoAdLayer'
 // Example assumes that the content video plays within video element with id ‘videoElement’
 var slot = document.getElementById('videoAdLayer');
 environmentVars.slot = slot;
 // Share the content video slot with the ad environmentVars.videoSlot =
document.getElementById('videoElement');
 environmentVars.videoSlotCanAutoPlay = true;
 ad.initAd(slot.style.width, slot.style.height, viewMode, desiredBitrate, creativeData,
environmentVars)

// The following method call is specific to JavaScript
subscribe
 subscribe (fn : Reference, event : String, [listenerScope : Reference]) :void

• The video player calls this method to register a listener to a particular event
◦ fn is a reference to the function that needs to be called when the specified

event occurs
◦ event is the name of the event that the video player is subscribing to
◦ [optional] listenerScope is a reference to the object in which the function is

defined

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 46	 VPAID_v2.0	

unsubscribe
 unsubscribe (fn: Reference, event : String) :void

• The video player calls this method to remove a listener for a particular event
◦ event is the name of the event that the video player is unsubscribing from
◦ fn is the event listener that is being removed

8.1.2 Properties
The ad maintains properties described as part of the section 3.2. For the JavaScript
implementation, the ad provides a getter, and if the property is settable, a setter function for
each of the proprties. Player uses property specific getter and setter functions to access the ad
properties. For example, player gets/sets adVolume using the following functions
implemented by the ad:

◦ getAdVolume() : Number
◦ setAdVolume(val : Number) : void

If the property can only be read by the player but cannot be set by it, ad only provides a
getter function. For example for adExpanded property, ad only provides following getter
function:

◦ getAdExpanded() : Number
Same scheme is used for all of the other properties described in section 3.2.

8.1.3 Security
VPAID uses the ad rendering approach as described in the “IAB Best Practice for Rich Media
Ads in Asynchronous Ad Documents” found at the following link for further review:

http://www.iab.net/media/file/rich_media_ajax_best_practices.pdf

The VPAID ad unit is rendered within a friendly IFRAME (FIF) and can access the DOM of the
page in which the player is rendered.

As modern technology further enables isolation between the display ad and the publisher
page content, IAB will embark on developing specifications for enhanced security and VPAID
will be updated to incorporate applicable security recommendations.

8.1.4 Ad Rendering and Namespace Management
To provide interoperability between the video player and ad unit implementations, the video
player and the ad unit must follow, beyond the API specification, guidelines related to ad
loading and rendering. The ad loading and rendering guidelines are described below and
include example code.

• In order to avoid namespace collisions across multiple ads on the same page, all ad
javascript should be loaded in a friendly iframe, effectively making the ad javascript
the only element in the new DOM

• A standardized global factory function named 'getVPAIDAd()' will be called in the
iframe to get an object of the ad and returned to the video player on the content page.

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 47	 VPAID_v2.0	

• Any supporting javascript required by the ad unit would need to be loaded by the ad
in the friendly iframe.

• This is the same approach as recommended by the IAB Best Practice for Rich Media
Ads in Asynchronous Ad Documents.

8.1.5 Examples
Example of AdLoading
iframe = document.createElement('iframe');
iframe.id = "adloaderframe";
document.body.appendChild(iframe);
// ‘url’ points to the ad js file
iframe.contentWindow.document.write('<script src="' + url + '"></scr' + 'ipt>');
var fn = iframe.contentWindow['getVPAIDAd'];
if (fn && typeof fn == 'function') {
 VPAIDCreative = fn();
}
In the example the return value of the function is an instance of the ad class

Example code to check if the VPAIDCreative implements all of the functions
required by the VPAID spec

 this.checkVPAIDInterface = function(VPAIDCreative) {
 if(
 VPAIDCreative.handshakeVersion && typeof
VPAIDCreative.handshakeVersion == "function" && VPAIDCreative.initAd && typeof
VPAIDCreative.initAd == "function" &&
 VPAIDCreative.startAd && typeof VPAIDCreative.startAd == "function" &&
 VPAIDCreative.stopAd && typeof VPAIDCreative.stopAd == "function" &&
 VPAIDCreative.skipAd && typeof VPAIDCreative.skipAd == "function" &&
 VPAIDCreative.resizeAd && typeof VPAIDCreative.resizeAd == "function" &&
 VPAIDCreative.pauseAd && typeof VPAIDCreative.pauseAd == "function" &&
 VPAIDCreative.resumeAd && typeof VPAIDCreative.resumeAd == "function"
&&
 VPAIDCreative.expandAd && typeof VPAIDCreative.expandAd == "function"
&&
 VPAIDCreative.collapseAd && typeof VPAIDCreative.collapseAd == "function"
&&
 VPAIDCreative.subscribe && typeof VPAIDCreative.subscribe == "function" &&
 VPAIDCreative.unsubscribe && typeof VPAIDCreative.unsubscribe ==
"function"){
 return true;
 }
 return false;
 };

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 48	 VPAID_v2.0	

Example Ad Implementation
This is an example of basic implementation of a Linear VPAID ad.
LinearAd = function() {
 // The slot is the div element on the main page that the ad is supposed to occupy
 this._slot = null;
 // The video slot is the video object that the creative can use to render and video element it
might have.
 this._videoSlot = null;
 }; LinearAd.prototype.initAd = function(width, height, viewMode, desiredBitrate,
 creativeData, environmentVars) {
 // slot and videoSlot are passed as part of the environmentVars
 this._slot = environmentVars.slot;
 this._videoSlot = environmentVars.videoSlot;

 console.log("initAd");
 };

 LinearAd.prototype.startAd = function() {
 console.log("Starting ad");
 .
 .
 .
 };
 LinearAd.prototype.stopAd = function(e, p) {
 console.log("Stopping ad");
 .
 .
 .
 };
 LinearAd.prototype.setAdVolume = function(val) {
 console.log("setAdVolume");
 .
 .
 .
 };

 LinearAd.prototype.getAdVolume = function() {
 console.log("getAdVolume");
 .
 .
 .
 };
 LinearAd.prototype.resizeAd = function(width, height, viewMode) {
 console.log("resizeAd");

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 49	 VPAID_v2.0	

 .
 .
 .
 };
 LinearAd.prototype.pauseAd = function() {
 console.log("pauseAd");
 .
 .
 .
 };
 LinearAd.prototype.resumeAd = function() {
 console.log("resumeAd");
 .
 .
 .
 };
 LinearAd.prototype.expandAd = function() {
 console.log("expandAd");
 .
 .
 .
 };
 LinearAd.prototype.getAdExpanded = function(val) {
 console.log("getAdExpanded");
 .
 .
 .
 };

 LinearAd.prototype.getAdSkippableState = function(val) {
 console.log("getAdSkippableState");
 .
 .
 .
 };

 LinearAd.prototype.collapseAd = function() {
 console.log("collapseAd");
 .
 .
 .
 };

 LinearAd.prototype.skipAd = function() {
 console.log("skipAd");

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 50	 VPAID_v2.0	

 .
 .
 .
 };

 // Callbacks for events are registered here
 LinearAd.prototype.subscribe = function(aCallback, eventName, aContext) {
 console.log("Subscribe");
 .
 .
 .
 };
 // Callbacks are removed based on the eventName
 LinearAd.prototype.unsubscribe = function(eventName) {
 console.log("unsubscribe");
 .
 .
 .
 }
getVPAIDAd = function() {
 return new LinearAd();
};

Sample Video player Interface Code

• This code is meant to be part of the video player that interacts with the ad.
• It effectively wraps the VPAID creative into an enveloping object that the video player

can interact with
◦ The example illustrates how callback can be registered with the creative.

// This class is meant to be part of the video player that interacts with the Ad.
// It takes the VPAID creative as a parameter in its contructor.
VPAIDWrapper = function(VPAIDCreative) {
 this._creative = VPAIDCreative;
 if(!this.checkVPAIDInterface(VPAIDCreative))
 {
 //The VPAIDCreative doesn't conform to the VPAID spec
 return;
 }
 this.setCallbacksForCreative();
 // This function registers the callbacks of each of the events

 VPAIDWrapper.prototype.setCallbacksForCreative = function() {

 //The key of the object is the event name and the value is a reference to the
callback function that is registered with the creative

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 51	 VPAID_v2.0	

 var callbacks = {
 AdStarted : this.onStartAd,
 AdStopped : this.onStopAd,
 AdSkipped : this.onSkipAd,
 AdLoaded : this.onAdLoaded,
 AdLinearChange : this.onAdLinearChange,
 AdSizeChange : this.onAdSizeChange,
 AdExpandedChange : this.onAdExpandedChange,
 AdSkippableStateChange : this.onAdSkippableStateChange,
 AdDurationChange : this.onAdDurationChange,
 AdRemainingTimeChange : this.onAdRemainingTimeChange,
 AdVolumeChange : this.onAdVolumeChange,
 AdImpression : this.onAdImpression,
 AdClickThru : this.onAdClickThru,
 AdInteraction : this.onAdInteraction,
 AdVideoStart : this.onAdVideoStart,
 AdVideoFirstQuartile : this.onAdVideoFirstQuartile,
 AdVideoMidpoint : this.onAdVideoMidpoint,
 AdVideoThirdQuartile : this.onAdVideoThirdQuartile,
 AdVideoComplete : this.onAdVideoComplete,
 AdUserAcceptInvitation : this.onAdUserAcceptInvitation,
 AdUserMinimize : this.onAdUserMinimize,
 AdUserClose : this.onAdUserClose,
 AdPaused : this.onAdPaused,
 AdPlaying : this.onAdPlaying,
 AdError : this.onAdError,
 AdLog : this.onAdLog
 };
 // Looping through the object and registering each of the callbacks with the
creative
 for (var eventName in callbacks) {
 this._creative.subscribe(callbacks[eventName],
 eventName, this);
 }
 };

 // Pass through for initAd - when the video player wants to call the ad
 VPAIDWrapper.prototype.initAd = function(width, height,
 viewMode, desiredBitrate, creativeData,
 environmentVars) {
 this._creative.initAd(width, height, viewMode,
 desiredBitrate, creativeData,
 environmentVars);
 };
 // Callback for AdPaused

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 52	 VPAID_v2.0	

 VPAIDWrapper.prototype.onAdPaused = function() {
 console.log("onAdPaused");
 .
 .
 .
 };
 // Callback for AdPlaying
 VPAIDWrapper.prototype.onAdPlaying = function() {
 console.log("onAdPlaying");
 .
 .
 .
 };
 // Callback for AdError
 VPAIDWrapper.prototype.onAdError = function(message) {
 console.log("onAdError: " + message);
 .
 .
 .
 };
 // Callback for AdLog
 VPAIDWrapper.prototype.onAdLog = function(message) {
 console.log("onAdLog: " + message);
 .
 .
 .
 };
 // Callback for AdUserAcceptInvitation
 VPAIDWrapper.prototype.onAdUserAcceptInvitation = function() {
 console.log("onAdUserAcceptInvitation");
 .
 .
 .
 };
 // Callback for AdUserMinimize
 VPAIDWrapper.prototype.onAdUserMinimize = function() {
 console.log("onAdUserMinimize");
 .
 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdUserClose = function() {
 console.log("onAdUserClose");
 .

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 53	 VPAID_v2.0	

 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdSkippableStateChange = function() {
 console.log("Ad Skippable State Changed to: " +
this._creative.getAdSkippableState());
 .
 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdExpandedChange = function() {
 console.log("Ad Expanded Changed to: " + this._creative.getAdExpanded());
 .
 .
 .
 };
 // Pass through for getAdExpanded
 VPAIDWrapper.prototype.getAdExpanded = function() {
 console.log("getAdExpanded");
 return this._creative.getAdExpanded();
 };
 // Pass through for getAdSkippableState
 VPAIDWrapper.prototype.getAdSkippableState = function() {
 console.log("getAdSkippableState");
 return this._creative.getAdSkippableState();
 };
 // Callback for AdSizeChange
 VPAIDWrapper.prototype.onAdSizeChange = function() {
 console.log("Ad size changed to: w=" + this._creative.getAdWidth() + “ h=” +
this._creative.getAdHeight());
 .
 .
 .
 };
 // Callback for AdDurationChange
 VPAIDWrapper.prototype.onAdDurationChange = function() {
 // console.log("Ad Duration Changed to: " + this._creative.getAdDuration());
 .
 .
 .
 };
 // Callback for AdRemainingTimeChange
 VPAIDWrapper.prototype.onAdRemainingTimeChange = function() {

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 54	 VPAID_v2.0	

 // console.log("Ad Remaining Time Changed to: " +
this._creative.getAdRemainingTime());
 .
 .
 .
 };
 // Pass through for getAdRemainingTime
 VPAIDWrapper.prototype.getAdRemainingTime = function() {
 console.log("getAdRemainingTime");
 return this._creative.getAdRemainingTime();
 };

 // Callback for AdImpression
 VPAIDWrapper.prototype.onAdImpression = function() {
 console.log("Ad Impression");
 .
 .
 .
 };
 // Callback for AdClickThru
 VPAIDWrapper.prototype.onAdClickThru = function(url, id, playerHandles) {
 console.log("Clickthrough portion of the ad was clicked");
 .
 .
 .
 };
 // Callback for AdInteraction
 VPAIDWrapper.prototype.onAdInteraction = function(id) {
 console.log("A non-clickthrough event has occured");
 .
 .
 .
 };

 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdVideoStart = function() {
 console.log("Video 0% completed");
 .
 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdVideoFirstQuartile = function() {
 console.log("Video 25% completed");

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 55	 VPAID_v2.0	

 .
 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdVideoMidpoint = function() {
 console.log("Video 50% completed");
 .
 .
 .
 };
 // Callback for AdUserClose
 VPAIDWrapper.prototype.onAdVideoThirdQuartile = function() {
 console.log("Video 75% completed");
 .
 .
 .
 };
 // Callback for AdVideoComplete
 VPAIDWrapper.prototype.onAdVideoComplete = function() {
 console.log("Video 100% completed");
 .
 .
 .
 };
 // Callback for AdLinearChange
 VPAIDWrapper.prototype.onAdLinearChange = function() {
 console.log("Ad linear has changed: " + this._creative.getAdLinear())
 .
 .
 .
 };
 // Pass through for getAdLinear
 VPAIDWrapper.prototype.getAdLinear = function() {
 console.log("getAdLinear");
 return this._creative.getAdLinear();
 };

 // Pass through for startAd()
 VPAIDWrapper.prototype.startAd = function() {
 console.log("startAd");
 this._creative.startAd();
 };
 // Callback for AdLoaded

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 56	 VPAID_v2.0	

 VPAIDWrapper.prototype.onAdLoaded = function() {
 console.log("ad has been loaded");
 .
 .
 .
 };
 // Callback for StartAd()
 VPAIDWrapper.prototype.onStartAd = function() {
 console.log("Ad has started");
 .
 .
 .
 };
 //Pass through for stopAd()
 VPAIDWrapper.prototype.stopAd = function() {
 this._creative.stopAd();
 };

 // Callback for AdUserClose
 VPAIDWrapper.prototype.onStopAd = function() {
 console.log("Ad has stopped");
 .
 .
 .
 };

 // Callback for AdUserClose
 VPAIDWrapper.prototype.onSkipAd = function() {
 console.log("Ad was skipped");
 .
 .
 .
 };
 //Passthrough for setAdVolume
 VPAIDWrapper.prototype.setAdVolume = function(val) {
 this._creative.setAdVolume(val);
 };

 //Passthrough for getAdVolume
 VPAIDWrapper.prototype.getAdVolume = function() {
 return this._creative.getAdVolume();
 };

 // Callback for AdVolumeChange
 VPAIDWrapper.prototype.onAdVolumeChange = function() {

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 57	 VPAID_v2.0	

 console.log("Ad Volume has changed to - " + this._creative.getAdVolume());
 .
 .
 .
 };

 //Passthrough for resizeAd
 VPAIDWrapper.prototype.resizeAd = function(width, height,
 viewMode) {
 this._creative.resizeAd();
 };
 //Passthrough for pauseAd()
 VPAIDWrapper.prototype.pauseAd = function() {
 this._creative.pauseAd();
 };
 //Passthrough for resumeAd()
 VPAIDWrapper.prototype.resumeAd = function() {
 this._creative.resumeAd();
 };
 //Passthrough for expandAd()
 VPAIDWrapper.prototype.expandAd = function() {
 this._creative.expandAd();
 };
 //Passthrough for collapseAd()
 VPAIDWrapper.prototype.collapseAd = function() {
 this._creative.collapseAd();
 };

Video Player-Ad Interface Definition (VPAID) - Version 2.0

©	 2012	 Interactive	 Advertising	 Bureau	 58	 VPAID_v2.0	

9 Glossary
Video Ad – Advertisement that is displayed within the context of video content play. Note
that the key part of the definition is that the content is video. The advertisement itself may or
may not be a video.

Advanced Video Ad – Video advertisement with programming logic that enables user
interactivity, interaction with the video content play, or other advanced features.

Companion Ad – Commonly text, display ad, rich media, or skin that wrap around the
video experience. These ads come in a number of sizes and shapes, and typically run
alongside or surrounding the video player.

Linear Video Ad – The ad is presented before, in the middle of, or after the video content is
consumed by the user, in very much the same way a TV commercial can play before, during or
after the chosen program.

Non-linear Video Ad – The ad unit runs concurrently with the video content so the users
see the ad while viewing the content. Non-linear video ads can be delivered as text, graphical
ads, or as video overlays.

Post-roll – a Linear Video ad spot that appears after the video content completes.

Pre-roll – a Linear Video ad spot that appears before the video content plays.

VAST (Video Ad Serving Template) – IAB-defined XML document format describing an
ad unit to be displayed in, over, or around a Video Player.

Video Player – Environment in which in-stream video content is played. The Video Player
may be built by the publisher or provided by a vendor.

