

DIGITAL AUDIO AD SERVING TEMPLATE
(DAAST)
VERSION 1.0 DRAFT
FOR PUBLIC COMMENT

Public Comment Period: September 8 to October 10, 2014 @ 5pm ET

IMPORTANT DRAFT RELEASE NOTES:
This is a draft for public comment, this comment period will close on October 10th at 5pm
Eastern Time. Please submit feedback to Jessica.anderson@iab.net prior to the deadline.

You should take no reliance or action on this draft specification. Please wait for the final
specification to be published.

file:///Users/kstroud/Dropbox/Clients/IAB/Audio/DAAST%20Drafts/PC%20and%20Final//C/Users/jessica.anderson/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/W15EJCPT/Jessica.anderson@iab.net

This document has been developed for the IAB Audio Committee

The Digital Audio Ad Serving Template (DAAST 1.0) specification was created by a working
group of volunteers from 28 IAB member companies.

The Digital Audio Ad Serving Template (DAAST) Working Group was led by:

x Chris Doe, VINDICO
x Benjamin Masse, Triton Digital

The following IAB member companies contributed to this document:

Abacast
Adswizz
Aha Radio
Apple Inc. (iAd)
CBS Interactive
Clear Channel Media and
Entertainment
comScore
Dial Global
Ernst & Young
Goodway Group

Google
Katz 360
Microsoft Advertising
Mirror Image Internet
National Public Media
NRG Media
Pandora
PROXi Digital
SET
Smartclip
Spotify

TargetSpot
Triton Digital
TuneIn
Univision Communications
Inc,
VINDICO
Westwood One
XappMedia, Inc.
ZEDO

The IAB leads on this initiative were Jessica Anderson and Katie Stroud

Contact jessical.anderson@iab.net to comment on this document.

ABOUT THE IAB’S AUDIO COMMITTEE

The Digital Video Committee of the IAB is comprised of over 180 member companies actively
engaged in the creation and execution of digital video advertising. One of the goals of the
committee is to implement a comprehensive set of guidelines, measurement, and creative
options for interactive video advertising. The Committee works to educate marketers and
agencies on the strength of digital video as a marketing vehicle.

A full list of Committee member companies can be found at:
http://www.iab.net/audio_committee

This document is on the IAB website at: http://www.iab.net/daast

© 2014 Interactive Advertising Bureau 2 DAAST_v1.0_Draft

mailto:jessical.anderson@iab.net
http://www.iab.net/audio_committee
http://www.iab.net/daast

Table of Contents
Executive Summary .. 6
Intended Audience .. 6

1 General Overview .. 7

1.1 Rooting Digital Audio in Technology for Video .. 7
1.2 Audio Players and Devices .. 8
1.3 How Ad Serving Works in Display Advertising .. 10

1.3.1 Audio Ad Serving Using an XML Template ... 11
1.3.2 Digital Ad Tracking: Client-Side Vs. Server-side 13
1.3.3 Tracking With An Ad-Injection Server ... 13
1.3.4 Moving Toward Client-Side Tracking in Digital Audio 13
1.3.5 Caching and Asset Transcoding with Ad-Injection 14

1.4 Ad Types in Digital Audio .. 14
1.4.1 Linear Ads ... 15
1.4.2 Companion Ads .. 15
1.4.3 Ad Pods ... 16
1.4.4 Skippable Ads ... 16

1.5 What This Template Specification is Not .. 16

2 Compliance Recommendations 17

2.1 Audio Ad Server Expectations... 17
2.2 Audio Player Expectations ... 18

2.2.1 Requesting DAAST Ad Types .. 18
2.2.2 Imposing Template Structure ... 19

2.3 Ad Type Compliance .. 19
2.4 Minimal Compliance Recommendations .. 20
2.5 Browser Security for Flash™ and JavaScript™ ... 21

2.5.1 crossdomain.xml for Flash .. 21
2.5.2 Cross Origin Resource Sharing (CORS) for JavaScript 21

2.6 XML Namespace ... 21

3 DAAST Implementation Details 22

3.1 General DAAST Document Structure .. 22
3.1.1 Declaring the DAAST response ... 22
3.1.2 The Root <Ad> Element .. 22

3.1.2.1 Ad Attributes ... 23
3.1.2.2 Ad Structure .. 23

3.1.3 The <Wrapper> Element ... 24
3.1.4 The <InLine> Element ... 24

3.1.4.1 Required <InLine> Elements .. 24

© 2014 Interactive Advertising Bureau 3 DAAST_v1.0_Draft

3.1.4.2 Optional <InLine> Elements ... 25
3.1.5 DAAST Tracking.. 26

3.1.5.1 Summary of DAAST Tracking Elements .. 26
3.1.5.2 Companion Click Tracking ... 27
3.1.5.3 The <Impression> Element .. 28
3.1.5.4 Impression vs. “Start” Event ... 29
3.1.5.5 Multiple Impressions ... 29
3.1.5.6 Tracking Records for Multiple Parties .. 29

3.1.6 The <Creatives> Element ... 29
3.1.6.1 Creative Attributes .. 30
3.1.6.2 DAAST Example: Linear with Companions .. 31
3.1.6.3 Creative Extensions ... 31

3.2 DAAST Requirements by Compliance Format ... 32
3.2.1 Linear Ad Format .. 33

3.2.1.1 Linear Elements.. 33
3.2.1.2 The <Duration> Element .. 34
3.2.1.3 The <MediaFiles> Element .. 34
3.2.1.4 Media File Attributes ... 34
3.2.1.5 The <AdParameters> Element (Optional) .. 35
3.2.1.6 The <AdInteractions> Element (Optional) .. 35
3.2.1.7 The <TrackingEvents> Element (Optional) .. 36
3.2.1.8 Multiple Tracking Events of the Same Type ... 37
3.2.1.9 The <Icons> Element (Optional) .. 38

3.2.2 Companion Ad Format ... 38
3.2.2.1 Companion Ad Structure .. 38
3.2.2.2 Companion Resource Elements... 39
3.2.2.3 Other Companion Elements ... 41
3.2.2.4 The “required” Attribute for CompanionAds ... 41
3.2.2.5 Companion Attributes ... 41
3.2.2.6 The Optional adSlotID Attribute for <Companion> 42
3.2.2.7 Companion Tracking Details .. 42

3.2.3 Ad Pods ... 43
3.2.3.1 Ad Pods and Stand-Alone Ads ... 43
3.2.3.2 Playing a Pod of Ads .. 44
3.2.3.3 Ad Pod Example ... 44

3.2.4 Skippable Linear Creative .. 44
3.2.4.1 Skipoffset Attribute ... 45
3.2.4.2 Skip Event .. 45
3.2.4.3 Progress Event ... 46

3.3 General DAAST Requirements .. 47
3.3.1 DAAST Wrapper Ads (Ad Server Redirects) ... 47

3.3.1.1 General Wrapper Structure .. 47
3.3.1.2 Wrapper Chain and Multiple Ad Management ... 48
3.3.1.3 Wrapper Creative ... 49
3.3.1.4 Linear Creative Format within a Wrapper .. 49
3.3.1.5 Companion Creative Format in Wrapper Ads .. 50
3.3.1.6 Wrapper Conflict Management and Precedence ... 51

3.3.2 Error Reporting ... 51
3.3.2.1 Ad Server Details: <Error> Element ... 52
3.3.2.2 Audio Player Details ... 52
3.3.2.3 DAAST Error Codes Table ... 52
3.3.2.4 No Ad Response .. 54

© 2014 Interactive Advertising Bureau 4 DAAST_v1.0_Draft

3.3.3 Industry Icon Support ... 54
3.3.3.1 Icon Use Case: AdChoices for Interest-Based Advertising (IBA) 54
3.3.3.2 The <Icons> Element ... 54
3.3.3.3 Attributes for the <Icon> Element ... 55
3.3.3.4 Structure of the <Icons> Element ... 56
3.3.3.5 Icon Clicks and Tracking .. 57
3.3.3.6 Precedence and Conflict Management: ... 58
3.3.3.7 Icons in Companion Ads .. 59

3.3.4 Macros ... 59

4 Human Readable Schema 60

5 DAAST Terminology ... 63

© 2014 Interactive Advertising Bureau 5 DAAST_v1.0_Draft

Executive Summary
The Digital Audio Ad Serving Template (DAAST) version 1.0 specification is the IAB’s first
technical solution to addressing a fragmented audio advertising marketplace. With widespread
adoption of DAAST 1.0, the audio advertising community can begin to serve and track audio
ads in a digital audio stream in much the same way that ads are tracked in digital video.

DAAST is rooted in the same digital ad serving technology used in digital video. The IAB Digital
Video Ad Serving Template (VAST) was used as a model for developing DAAST. Although
actual adoption numbers are not known, VAST is widely implemented in nearly all video players
that monetize their content with digital advertising. The adoption of VAST has paved the way for
exponential growth in digital video. With DAAST, we hope to achieve the same kind of growth in
digital audio.

Today, advertising in digital audio is operationally challenged by trying to integrate audio
advertising partners that all use different proprietary code for receiving and executing audio ads.
In addition to a variety of audio advertising platforms, the range of audio players and devices is
extensive. Implementing the common specifications available in DAAST, digital audio
advertisers and partners can more efficiently exchange audio ads across platforms.

But the vision for DAAST extends far beyond efficiencies in digital audio.

As the digital marketplace strives to achieve an omni-channel approach to reaching their
audiences, DAAST becomes a step toward making this possible. With the similarities between
digital video and digital audio, some companies were already attempting to use VAST to serve
and execute digital audio ads. However, digital audio faces certain challenges that are more
prevalent in audio distribution than in video.

One such challenge is the proliferation of so-called “thin clients”— devices that can only execute
streaming content and have no way to identify when an ad plays, much less to track it. Digital
video is increasingly experiencing the same challenge. Developing a specification that
addresses this and other challenges in audio brings the industry closer to developing a
specification that other media channels can use. A single media ad serving template can easily
extend from the templates used in video and audio once the nuances for each are worked out.

However, before moving ahead, digital audio needs a solution today. As streaming audio
platforms adopt the DAAST guideline and specification, the digital audio marketplace can grow
and the industry can begin to determine where adjustments need to be made in order to
develop a solution that extends to video and other forms of digital media.

Intended Audience
Anyone interested in serving and executing ads dynamically within audio content can benefit
from being familiar with these guidelines, but implementation details are targeted toward audio
player developers and device manufacturers, organizations that monetize audio content with
advertising, and any technology companies that develop and serve ads designed for digital
audio placement. Specifically, audio player and device engineers and product managers should
use this document as a guide when implementing technology designed to support an IAB-
compliant digital audio ad response.

© 2014 Interactive Advertising Bureau 6 DAAST_v1.0_Draft

1 General Overview
In general, digital advertising depends on browser technology to display ads along with other
content on webpages. Browsers such as Internet Explorer, Google Chrome, Firefox, and Safari
use hypertext markup language (HTML) to communicate with servers and other systems in the
ad supply chain that store, serve, display, and track digital ads.

Browser capability is an important component of digital advertising. While the proliferation of
devices continues to grow, HTML remains the common language for communication within the
ecosystem. However, audio content, much like video content, is framed within code that makes
up a player. The code used to build these players is unique to the content publisher. While one
publisher may use JavaScript to build its player, another may use Adobe Flash™. Even if two
different publishers use the same coding language to build their players, they each use their
own instance of the language with similar functions and variables that are likely named
differently and function slightly differently from player to player.

Without a common interface and guidelines for making use of HTML, marketers have to develop
multiple ads, each designed uniquely for each player it might play in. In this kind of fragmented
marketplace, publishers suffer from a lack of demand and limited options for monetizing their
content.

The IAB addressed this problem in digital video with an interface and guideline known as the
IAB Video Ad Serving Template (VAST) and intends to address digital audio advertising using a
similar approach with the Digital Audio Ad Serving Template (DAAST) specified in this
document.

1.1 Rooting Digital Audio in Technology for Video
The IAB Video Ad Serving Template (VAST) revolutionized advertising in digital video and
continues to contribute to growth and innovation in digital video. Taking away the visual
component of video, today’s digital audio marketplace looks a lot like video did before VAST
was introduced.

Before VAST, video struggled in a fragmented market in which ads had to be specially
developed for each player it used in any digital video campaign. The introduction of VAST
enabled ad developers to define ad creative that could be easily delivered to any VAST-enabled
player.

Today, audio suffers a similar dilemma; players are all built differently, contributing to a
fragmented market for ad delivery that stagnates digital audio growth. Vendors for audio ad
delivery and some audio players have already turned to VAST to help reduce friction in audio
advertising.

Building a template on something that is already working helps to establish a foundation for
technology that the industry can readily adopt. Audio is different than video, however; and
certain provisions are needed in an audio ad serving template that allows for the unique
technology of audio.

© 2014 Interactive Advertising Bureau 7 DAAST_v1.0_Draft

The Digital Audio Ad Serving Template (DAAST) is a step forward for audio, but also a step
forward for ad serving in general. If adjustments made for DAAST can accommodate audio in a
video ad serving medium, then a future version of an ad serving template can accommodate ad
serving in mediums that include video, audio, functional applications, games, and perhaps even
connected TVs.

1.2 Audio Players and Devices
Audio players may be a package of code that can be installed on select devices or operate in a
browser. However, in many cases the audio player is the device such as in the case of a car
stereo or portable audio device.

Audio player software and devices along with their capabilities play a big role in how ads are
served and tracked in digital audio. Players can range from full-featured, such as a browser-
based player or device-native application, complete with visual components, to a limited, or
“thin,” client such as a car stereo with only the ability to play an audio stream.

The following list describes some different players and their capabilities:

Browser-based audio players
There are two types of browser-based audio player: the single-feed station and the
multiple-feed station.

The single-feed radio station represents a single station that plays its own licensed or
syndicated content. Examples of single feed radio stations include stations like Pandora,
news stations, sport stations, music stations of a specific genre, and other branded
stations. These radio stations may have the ability to display image ads within the
player, banner ads on the webpages where they’re implemented, and track ads using
tracking pixels. These players represent the full-featured players that are nearly as
functional as a browser-based video player.

The multiple-feed radio station, often known as “aggregators,” is a browser-based audio
player that hosts multiple radio stations. The player itself has no visual component, but
the webpage on which it’s implemented has the ability to display banner ads.

In most cases, the audio content publisher sends content to the aggregator without any
control over the ad experience. And while the aggregator has the ability to display
banners, the audio content publisher that sent content to the aggregator has no way of
tracking how the ad experience is processed within the aggregator. If the audio publisher
wants the aggregator to display a companion ad, the ad may have to be sent ahead of
time and imbedded within the aggregator’s server.

Reducing friction in a multiple-feed radio station involves a solution that enables audio
content publishers to control and track the ad experience within the content sent to
aggregators. Once such solution may include adapting the IAB Video Ad Multi-Playlist
(VMAP) specification to audio. VMAP enables video content distributors to indicate ad
breaks within their content. The video aggregator then processes ad breaks as indicated
and sends tracking information to applicable parties. For more information about VMAP,
please visit http://iab.net/vmap.

Examples of multiple-feed radio stations include TuneIn and iHeartRadio.

© 2014 Interactive Advertising Bureau 8 DAAST_v1.0_Draft

Desktop Applications
Some audio players can be downloaded to your desktop computer. These players may
or may not have a visual component, and while they connect to the Internet, they don’t
necessarily maintain a persistent connection and can’t always track ads using traditional
methods.

Two common examples of desktop radio applications are iTunes and Spotify. iTunes is a
player with no visual component, but Spotify does include a visual component capable of
displaying visual image ads within the player.

Mobile Applications
Like desktop applications, mobile applications are downloaded onto the mobile device
and operate within the device’s operating system instead of within a browser. Both single
feed and multiple feed radio stations often offer mobile applications.

Some mobile audio applications may include a visual component capable of displaying
banner ads and may even have the ability to send tracking information when the device
is connected to the Internet. Other applications may be more simplistic and offer only
audio without any visual capabilities. In either case, mobile devices lack a persistent
connection to the Internet. While most commercial audio content providers have
circumvented this limitation, some providers may find that providing real-time tracking
information is challenging.

In-Car Audio Players
In-Car Audio Players possibly represent the least functionality available for digital audio
players. The car audio player is both the device and program in which audio signals or
files are executed. We call this type of player a “thin” device. This type of thin device is
hardcoded for operation, often lacking a “soft” operating system that can be updated.
Without the ability to be updated to recognize something like an XML file for receiving
ads, these thin devices cannot send tracking signals for tracking ad delivery and
performance on their own.

However, an in-car audio player may function in one of two ways: either directly
executing signals from the device itself or from an auxiliary device such as a mobile
device that is connected to the in-car audio player. In the second case, the mobile
device is tethered to the in-car player and is considered the player that executes audio
signals. The in-car player simply functions as speakers for the mobile device.

Smart Radios, Connected TVs and Set-top Boxes
Modern entertainment devices such as radios, TVs, and auxiliary devices for TVs are
being developed with the ability to connect to the Internet and take advantage of modern
advances in technology. However, in many cases, updating device software is limited to
the device’s hardware design. For example, if buttons are built in to the device to play,
rewind, pause, and mute, updating software to include additional buttons simply can’t be
done.

Despite their limitations, these modern devices fall somewhere between full-featured
devices and thin client devices. Many support browser functionality and include a visual
component that could be used to display image-based ads.

© 2014 Interactive Advertising Bureau 9 DAAST_v1.0_Draft

Game Console Audio Players
Digital game consoles are full of rich functionality that includes the ability to incorporate
audio player applications that game-players can use to listen to their favorite music while
playing video games. Such audio applications are capable of full browser functionality
and should be able to receive digital audio ads as well as track audio ad performance.
Visual components for game console audio player applications may also be available
depending on the application design.

1.3 How Ad Serving Works in Display Advertising
Display advertising involves serving images to a webpage. Webpages are built using HTML,
and serving an image to a page is done in much the same way that a Web developer would
insert images and other media from his or her own files. It’s all based on browser technology
that uses HTML as a framework for requesting, sending, receiving, and acknowledging files
from one server to another.

HTML enables dynamic insertion of ads into content based on what is known about the
audience and context into which it is served such as content classification and geographical
location. Details about a served ad, such as time, date, and context can be tracked using
browser-based technology.

The following diagram models a simplified ad serving process using browser-based technology:

1. Request ad: The browser requests an ad using a line of HTML code that was placed on
the page ahead of time. This line of HTML code is initiated when a site visitor opens the
page.

2. Send ad with URL for tracking: The ad server responds with html code that includes
the ad file and a tracking URL.

3. Ping server using tracking URL: When a browser “pings” a server, it’s making a
request to a server using the URL the server sent. In the case of tracking, the URL
identifies a server location where it can retrieve a file, typically an invisible 1x1 pixel-
sized image that the browser loads on the page. When this file is requested, the server
knows that the ad sent in the previous step was received and logs tracking information,
such as time and date, about the ad served.

The above model represents a direct exchange between the browser and an ad server. The ad
server may belong to the site owner who publishes content using the browser, or the ad server
can belong to any number of technology platforms that either manage ad service for the
publisher, for the advertiser, or for a variety of vendor services in between. In most cases,
several ad-serving systems are involved in providing ads to the browser.

© 2014 Interactive Advertising Bureau 10 DAAST_v1.0_Draft

The following diagram models an ad serving process in which the primary ad server redirects
the browser to a secondary ad server:

1. Request ad: The browser requests an ad using a line of HTML code that was placed on
the page ahead of time. This line of HTML code is initiated when a site visitor opens the
page.

2. Send URL redirect: The ad server responds with html code that redirects the browser to
a secondary ad server.

3. Ping server using tracking URL: The ad request is logged.
4. Request ad: The browser request the ad from the secondary server using the HTML

code received from the primary server.
5. Send ad with tracking URL: The secondary server responds with HTML code that

includes the ad file and multiple tracking URLs—one for each server used in serving the
ad. Sometimes additional URLs are included for pinging systems not involved in serving
the ad but collect information on the ad served.

6. Ping server using tracking URL: The ad request is logged.

In both of the simplified ad serving examples above, HTML is used between systems to serve,
render, and track ads. Browser technology provides a stable protocol used to communicate
between systems. However, audio systems, like video, are built independently of HTML. In
order for an audio system and a server to exchange information, they have to use a common
language. DAAST uses XML to establish this common language. The following section explains
how audio ad serving works using an XML template.

1.3.1 Audio Ad Serving Using an XML Template
Since audio players are not browsers, ad serving works a bit differently in digital audio than in
display advertising. In digital audio, player code must be able to recognize a response to its
request for an ad. Since players are all coded differently, an ad response must be coded
specifically to match the player’s code. The operational overhead for the parties involved to
achieve this limits the ability for growth.

However, using a template based on standardized Extensible Markup Language (XML), audio
player code can be adjusted to identify ad file information that a server sends using the
template. XML is a way of packaging information that can be structured independently of the

© 2014 Interactive Advertising Bureau 11 DAAST_v1.0_Draft

rendering so that other systems can find the information if they know what they’re looking for.
Using an XML template, digital audio ad servers can send files to any audio player that is
programmed to support the template and parse its contents for execution.

In general, the ad-serving process supported by an XML template involves the audio player
requesting an ad, executing the ad response, and sending tracking information for ad
impressions and other events back to the server. For audio players that use browser
technology, this process looks a lot like the browser-based display advertising process. The only
difference is that the systems involved are using XML instead of HTML. However, within the
XML template, URLs are included to locate and track ad details.

But in digital audio, audio players may only use simple code for executing a stream of content
without the browser-based ability to send and receive XML-nested HTML code for requesting
and tracking ads. The audio player in this case is often called a “thin client.” In general, thin
clients are devices, such as a car radio, that can only execute a stream of content. In other
cases, the thin client may be implemented within a device as an application, such as the native
audio application in a smart phone. In these cases an intermediary server may be used to
“inject” ads.

The following diagram illustrates how ad serving works when an ad-injection server is used to
serve and track ads:

1. Request ad: The ad-injection server makes a call to the ad server.
2. DAAST Response: DAAST is the XML-formatted response the server uses to deliver

the ad and all relevant information regarding how to execute it and track it.
3. Inject ad: The ad-injection server injects the ad into a stream of content that it serves to

the audio player. The audio player only recognizes a single stream of content, but the
ad-injection server can detect, to some extent, when the ad was played.

4. Ping server using tracking URL: The ad-injection server pings the ad server to
indicate that the ad was played.

In the scenario just described, two servers are involved: one is the ad server and one is the ad-
injection server, but the ad-injection server is placing and tracking ads on the audio player’s
behalf. The audio player is the client, which is the system on which the ad is played for the
listener.

© 2014 Interactive Advertising Bureau 12 DAAST_v1.0_Draft

In interactive advertising, tracking directly from the client has been determined to be more
accurate and produces fewer count discrepancies. The following sections outline the
implications of using the ad-injector server to track ads rather than the client.

1.3.2 Digital Ad Tracking: Client-Side Vs. Server-side
Digital advertising began in a browser-based system and uses protocols designed to use the
browser to execute and track ad service and performance. The process involves a client and a
server.

The client is the party that hosts content and executes ads that it receives. The server is the
party that sends the ad. The server can track when it sends the ad, and the client can track
when the ad is received. However, the server has no way of knowing whether the ad was
received unless the client can send confirmation to the server. Notifying the server that an ad
was received is called client-side tracking.

Client-side tracking begins when a page begins to load within a browser. Within the page
content is a line of code that tells the browser to fetch an ad from the server. This ad call to the
server prompts the server to return a line of code that tells the browser where to fetch the ad
creative using a URL. Included in that line of code is another URL to a 1x1 transparent pixel
image or other file. When the browser makes the request for the secondary URL, the server is
notified that the ad was received. Because of the use of the pixel, this process is often called
"pixel tracking."

Client-side tracking is a better method of counting how many ads are served than relying only
on server-side counts because both parties are involved in the process and counts on both
sides can be more closely aligned. Client-side counts are also closer to the ad being displayed.

In server-side tracking, both parties track the ad independently and discrepancies between the
two counts can vary a great deal.

1.3.3 Tracking With An Ad-Injection Server
The ad-serving process described in section 1.3.1 uses an ad-injector server on behalf of an
audio player client that can’t execute and track ads independent of the content stream they play.
This method falls into a gray area. The ad-injector server is not the client that plays the ad, but it
tracks ads on behalf of the client. This type of tracking is done neither server-side nor client
side.

However, because a lot of audio players are clients that can’t track ads, ad-injection server
tracking is a common practice in digital audio advertising.

1.3.4 Moving Toward Client-Side Tracking in Digital Audio
Technology in audio has not yet caught up to the capabilities of digital advertising and
limitations exist for client-side ad tracking in audio ad serving. The biggest limitation in audio is
the abundance of devices used to play audio, many of which are not browser-based and
therefore cannot use browser-based technology to track ads. The benefit for implementing
DAAST, however, is that audio players can track ads with or without browser support.

© 2014 Interactive Advertising Bureau 13 DAAST_v1.0_Draft

While there is work to be done, the IAB along with the Media Ratings Council (MRC) are moving
the industry toward the more accurate client-side tracking methods where possible, but work is
being done to consider the best way to count impressions for devices that cannot provide
tracking details.

Audio players that can be updated as DAAST matures should build support for DAAST into their
players as soon as possible. Audio players that lack browser support can use DAAST to support
client-side tracking. Until DAAST is implemented or for players and devices that lack client-side
counting abilities, using an ad-injection server to tracks ads on the audio player’s behalf is
acceptable because it’s closer to client-side tracking than relying solely on server counts.

The more that digital audio can support client-side tracking, the more marketers will find digital
audio as a viable option to use in their campaigns.

1.3.5 Caching and Asset Transcoding with Ad-Injection
An ad-injection server acts on behalf of many different types of clients (e.g. browsers, phones,
TVs, stereos, etc.). In order to guarantee appropriate asset availability across all of the device
types it supports, the ad-injection server may assume responsibility for transcoding any assets it
receives. In such cases, the ad-injection server may be required to cache DAAST documents
from 3rd-party servers in order to accommodate its transcoding needs.

Ad-injector document caching changes the one-to-one correspondence between the client and
the ad server. Impressions and tracking events are counted correctly and assets are up-to-date
within reasonable time frames using an ad-injection server, but in this model, the DAAST
response document and its enclosed assets may be cached and used for many clients, and
therefore, listeners.

Until the industry has standardized some best practices for the ad-injection server business
model, parties to a digital audio transaction should make note of this practice and discuss its
implications in their audio campaigns.

1.4 Ad Types in Digital Audio
Streaming audio is an auditory experience for listeners. In most cases, advertising in digital
audio means interrupting the stream of content with an audio ad. We call this a linear ad
because the ad is played linearly within the same stream that plays the content. A linear audio
ad is provided in audio format only, unlike a linear video ad that includes both audio and visual
components.

Many audio devices don’t support visual components because these devices are typically
designed to be heard while the listener is engaged in other activities like driving, jogging, or
riding a bike. However, some audio players, such as those built using browser technology or
designed to play on the desktop or a mobile device, may support the ability to display a visual
component to the ad.

DAAST supports linear audio-only ads with options to display a visual component when visual
components are supported.

The following sections provide more detail on the type of digital audio ads that can be served
using DAAST. Despite DAAST support for these ads, audio players can only process ad types

© 2014 Interactive Advertising Bureau 14 DAAST_v1.0_Draft

based on their technical capabilities. See section 1.2 for information on different audio player
and devices. See section 2 for information on compliance recommendations.

1.4.1 Linear Ads
One of the key characteristics of a linear audio ad is that it demands the full audible attention
from the listener because the ad takes over the audio experience entirely for a bounded
duration of time. In general, linear audio ads may play for anywhere from between 15 seconds
and a minute. Ad agencies should check with publishers about guidelines for audio creative,
including ad duration.

Linear audio ads play along the timeline of the content media. Placement along the timeline may
play a role in determining the value of the placement and classifies the ad as one of the
following:

x Pre-Roll Audio Ad: delivered before the audio content stream begins to play.
(Sometimes referred to as a Gateway Audio Ad)

x Mid-Roll Audio Ad: delivered between audio content segments.
x Post-Roll Audio Ad: delivered after or upon completion of the audio content. This type

of unit is only available for audio content with a set length of time.

While most audio ads are a simple audio file, technology is challenging static audio content
providers with innovations that enable the listener to interact with the ad using an audible
response. DAAST supports the ability to track such interactions, but execution and tracking can
only be done with audio players that can process interactions and supply tracking details.

1.4.2 Companion Ads
Companion ads are a concept inherited from the world of display. A companion ad is a visual ad
that is served with the audio file and displayed in the webpage surrounding the player or in
some other visual component the player supports.

The purpose of a companion ad is to invite interaction from the audience viewer, or to leave
behind a reminder (leave-behind) after the audio ad has completed. Another use for companion
ads is to display a logo tile for the ad in place of the artist tile that typically displays while the
audio content plays. A companion ad may also serve as a skin that wraps the audio player.

One or more Companion ads may be served with the originating linear portion of the ad, or what
is called the Master Ad. The player may disregard companion ads when no visual component is
available.

Although displayed only in audio players with a visual component to do so, companion ads in an
audio context are displayed while the listener may have the content and ads running in the
background and therefore not seen even when the ad is in-view. As of the release of this
document, companion ad impressions are governed by the display measurement guidelines
where viewable metrics are aggressively pushed as a measurement standard. While no plans to
consider provisions for counting companion ads in an audio context, buyers and sellers of
companions in audio should discuss the expectations for processing companion ads in audio
inventory.

© 2014 Interactive Advertising Bureau 15 DAAST_v1.0_Draft

1.4.3 Ad Pods
Ad Pods support the delivery of a set of sequential Linear ads. Ad Pods can play before, during
a break in, or after the content audio plays and function like a commercial break in a radio
program with multiple ad spots.

Placement of an ad pod is outside the scope of this specification but may be positioned by audio
player programming. Additionally, while not specified for audio, the IAB Video Multi-Ad Playlist
(VMAP) specification may have applications in audio for placing ad breaks in a stream of audio
content. See http://www.iab.net/vmap to learn more about VMAP.

1.4.4 Skippable Ads
Recent technology has enabled skippable ads in audio. Implementations in digital video have
shown that providing skip controls for the viewer helps advertisers learn more about the viewers’
interests, and may reduce viewer drop off rates within the publisher’s audience.

At the publication of these specifications a few audio publishers had begun to experiment with
skippable ads in digital audio. While the technology is new, DAAST supports the ability to
implement and track skip controls but audio publishers may choose whether they wish to
implement and support skippable ads.

1.5 What This Template Specification is Not
This document describes functional schema format requirements and expectations for
compliance with this specification. The following details are out of scope for this document.

Creative Specifications
This document provides technical details on using the XML schema that transfers data
from one system to another. Audio ad creative specs are not included as part of those
technical details. Marketers should communicate with audio content publishers regarding
creative specifications for advertising in their players.

Ad Metric Specification
While this template covers some details about sending URIs that track ad delivery, this
document does not provide details on audio ad-serving metrics or the best practices for
tracking audio ads. The IAB Digital Audio Committee is working on audio ad metric
definitions and guidelines.

Player Execution of a Digital Audio Ad Serving Template response
XML does not “do” anything; it’s simply a mechanism for transferring data from one
system to another. Audio player technology must be able to parse a DAAST ad server
response and use the data in accordance with the guidelines in this document. This
document provides detailed requirements for the ads in a DAAST response, but does
not provide a concrete technical implementation. Audio player engineers can use the
information in this document to design and build a compliant audio player, using
whatever technology the engineer prefers to use.

© 2014 Interactive Advertising Bureau 16 DAAST_v1.0_Draft

http://www.iab.net/vmap

Implementation
This specification provides details about key elements used for serving and tracking
audio ads and how to support them, but implementation details are left to the businesses
that choose to support them. To the extent possible, minimum compliance
recommendations should be implemented, but where technology is lacking, the audio
player should disclose which DAAST elements are supported and to what extent.

Mechanism for Disclosure
DAAST 1.0 offers some options for audio player implementations on what they must
support in order to be DAAST-compliant. The party who owns the DAAST-compliant
audio player must disclose what features are supported, but the timing and process for
doing so is currently left to the parties involved. Some audio ad agencies and partners
need disclosure in real-time, but some parties may find that disclosure prior to campaign
implementation is sufficient. The IAB is moving toward putting guidelines and
certification practices in place to improve efficiency in IAB-compliant systems.

2 Compliance Recommendations
The IAB Digital Audio Ad Serving Template (DAAST) is a template for providing digital audio ad
information to audio players using Extensible Markup Language (XML). This specification
outlines the structure for providing ad details such as where to find ad creative files, the
advertiser represented in the ad, tracking information, and other information necessary for the
audio player to execute as well as for providing execution details valuable to marketers. As
noted in section 1.5, audio ad creative specifications are not included as part of these technical
details. To be interoperable within systems of the digital audio ecosystem, both ad servers and
audio players should adopt these guidelines.

This section provides general details about how audio players and ad servers should use and
respond to DAAST ads so that compliant systems contribute to increased demand and
expanded options for monetizing audio content. As discussed further in sections 2.3 and 2.4 of
this document, where technology is lacking, the audio player should disclose which DAAST
elements are supported and to what extent.

2.1 Audio Ad Server Expectations
In order for an audio ad to function in a DAAST-compliant audio player or audio streaming
server the ad server must respond to the player’s request for an ad with an XML response
formatted according to the specifications outlined in this document. Ideally, audio ad servers
should also be able to receive process and respond to any player requests for tracking and error
details in the DAAST response that the ad server sent.

As a best practice, ad vendors should consider volume normalization. A sudden spike in volume
can sometimes damage a listener’s device. Some publishers and their ad-injection server
vendors won’t allow and ad to be played until they’ve ensured that the ad’s volume has been
normalized.

© 2014 Interactive Advertising Bureau 17 DAAST_v1.0_Draft

2.2 Audio Player Expectations
DAAST enables audio publishers to leverage their audio players’ unique designs, but
adjustments to the code are needed in order to read and process a DAAST ad response. In
general, the audio player should be able to recognize a DAAST response, parse it, and execute
the files provided depending on what the player can support.

Audio players should accept ads that it can support and that comply with the publisher’s
specifications. Ads that fall short of publisher requirements may be ignored. For example, if a
publisher requires ads that are 28 seconds in duration, then any ads returned that don’t meet
that requirement may be ignored.

A DAAST-compliant audio player is responsible for:

x Playing the audio ad as specified and within the limits of audio player declared supports
x Respecting ad server instructions in a DAAST response, including those of any

subsequent ad servers called in a chain of wrapper responses, providing the responses
comply with the specifications outlined in this document and within limits of audio player
declared supports

x Supporting XML conventions such as standard comment syntax (e.g. acknowledge
comments in the standard XML syntax: <!--comment-->)

Details for proper audio ad play and DAAST support are defined throughout this document.

2.2.1 Requesting DAAST Ad Types
DAAST offers four different types for compliance. (See section 2.3 for details.) Publishers must
declare which type(s) they support for compliance. Audio players should also indicate supported
type(s) during the ad request.

Players may communicate directly with the audio ad server or with the use of an ad-injection
server that could be either the publisher’s or a vendor’s. When using an ad-injection server,
publishers need to pass as much information as possible about the listener and the player
capabilities for DAAST requests, which may be relevant in the ad selection process. Such data
may include:

x User’s IP address
x Client’s user-agent
x Ad types supported by the player
x If supporting companion ads

o Details on the rendering capabilities, such as Flash or JavaScript
o Ability to handle click-through links

The mechanism to do this is outside the scope of DAAST but should be considered.

© 2014 Interactive Advertising Bureau 18 DAAST_v1.0_Draft

2.2.2 Imposing Template Structure
Publishers are encouraged to set requirements (i.e. file size, audio format, duration, etc.) for
what they will accept and play in their audio players. Advertisers should always consider
publisher requirements when developing creative for an audio ad campaign.

However, when publishers also require that DAAST ad responses include ONLY details for
whatever meets their requirements, then the spirit of the cross-platform audio ad delivery that
DAAST offers is lost.

For example, DAAST offers a means for ad servers to include multiple media files: perhaps one
for each audio type that meets requirements for a variety of audio players. Each audio player
can then parse the DAAST response for the media file that meets individual publisher
requirements. Such a response can be served across multiple DAAST-compliant audio players
without modification.

If, however, a publisher stipulates that a DAAST ad contain ONLY the elements that are
relevant to its requirements (e.g. only one media file that meets its requirements), then the
DAAST response can only be served to that publisher (and any others that happen to have the
exact same requirements).

Limiting an ad server’s ability to create dynamic DAAST responses with details that meet a wide
range of requirements greatly limits the benefits that DAAST was designed to offer. While
DAAST guidelines don’t restrict publishers from imposing specific structure, this practice is not
recommended. Instead, publishers should accept any DAAST response that conforms to the
specification as defined in the DAAST XSD. Publishers may ignore any details not supported
and may decide not to play those ads that do not meet the publishers’ requirements.

2.3 Ad Type Compliance
DAAST supports four ad types: linear ads, companion ads, ad pods, and skippable ads. These
ad types and specific details for including them in a DAAST ad response are covered in section
3. At a minimum, compliant audio publishers should support linear audio ads. In addition,
publishers may choose to support variations on linear audio ads with provisions for companion
display ads and/or audio ad pods. However, supporting additional ad types is not required for
IAB DAAST compliance.

The DAAST compliance ad formats are as follows:

1. Linear Audio Ads
2. Companion Display Ads
3. Audio Ad Pods
4. Skippable Ads

Companies wishing to display IAB’s seal for DAAST compliance must declare which of the
above ad types they support.

© 2014 Interactive Advertising Bureau 19 DAAST_v1.0_Draft

2.4 Minimal Compliance Recommendations
In addition to declaring which audio ad types are supported in compliance with DAAST, audio
players should support some key elements used for serving and tracking audio ads. While this
section provides recommendations for minimal compliance, any DAAST-compliant audio player
with the ability to support recommended features should make every attempt to do so. Players
that lack the ability to support any of the features listed should be transparent about what is
supported and what is not. Additionally, players lacking such technology should work toward
implementing technology or services that meet DAAST minimal compliance recommendations.

DAAST-compliant audio players should support the following DAAST features:

1. Inline and wrapper ads (to support multiple ad-serving vendors)
2. Tracking events
3. Error reporting
4. Industry icons (only when visual components are supported)*

* With privacy concerns among consumers and special interest groups, any attempts to support industry icons, such
as the AdChoices icon used to offer consumers information and choice on the ads they see, further serves to improve
self-regulation in the industry. The Digital Advertising Alliance (DAA) leads the Internet-Based Advertising (IBA) Self-
Regulatory Program responsible for the AdChoices icon and other initiatives designed to offer consumers some
control over their ad experience and any data collected on them. To learn more about the DAA’s IBA program, visit
http://www.iab.net/public_policy/behavioral-advertisingprinciples.

This specification provides details about the features listed above and how to support them, but
implementation details are left to the businesses that choose to support them. For example,
supporting tracking events involves client-side tracking, meaning that the audio player (client)
makes a call to the ad server to indicate that an event was executed on the client-side. Some
audio devices may not have the technology available to support client-side tracking. In such
cases, services such as ad-injection servers should be considered to help bring ad tracking
closer to a client-side tracking solution. See section 1.3.3 for more information on tracking ads
with an ad-injection server.

Digital advertising in general has promoted and supported client-side tracking to the extent
possible as technology allows. Client-side tracking offers the most accurate measurement for
both the ad server and the audio player by helping to reduce discrepancies between what is
tracked on both sides of the transaction. However, digital audio measurement and tracking may
struggle to achieve client-side tracking because of the proliferation of devices used that lack the
technology to do so. However, as the technology matures, DAAST can help remove much of the
friction present in today’s market just as VAST did the same for digital video. See section 1.3.2
for more information on client-side tracking.

As discussed in section 1.5, this document does not provide details on audio ad-serving metrics
or the best practices for tracking audio ads. The IAB Digital Audio Committee is working on
audio ad metric definitions and guidelines.

These compliance recommendations are flexible for audio players that may lack the technology
necessary to comply with certain features in DAAST. In these cases, the audio publisher should
disclose to its customers and partners what DAAST features are supported and to what extent.

© 2014 Interactive Advertising Bureau 20 DAAST_v1.0_Draft

http://www.iab.net/public_policy/behavioral-advertisingprinciples

2.5 Browser Security for Flash™ and JavaScript™
Modern browsers restrict Adobe Flash and JavaScript runtime environments from retrieving
data from other servers. For audio players that receive DAAST responses using a browser,
measures must be taken to accept any Flash or JavaScript ad files.

2.5.1 crossdomain.xml for Flash
To enable Flash audio players to accept a DAAST response, ad servers must provide a
crossdomain.xml file at their root HTTP domain. For example, adserver.com should provide the
file as follows:

http://adserver.com/crossdomain.xml
Flash audio players know to check the root domain of any server that sends it data.

The xml is a simple file that includes the following:

<cross-domain-policy>
 <allow-access-from domain=”*”>
<cross-domain-policy>
The asterisks (*) value for the domain attribute enables any Flash audio player to accept data
from the server providing the crossdomain.xml file.

For more information, visit http://kb2.adobe.com/cps/142/tn_14213.html

2.5.2 Cross Origin Resource Sharing (CORS) for JavaScript
In order for JavaScript audio players to accept a DAAST response, ad servers must include a
CORS header in the HTTP file that wraps the DAAST response. The CORS header must be
formatted as follows:

Access-Control-Allow-Origin: <origin header value>
Access-Control-Allow-Credentials: true
These HTTP headers allow an ads player on any origin to read the DAAST response from the
ad server origin. The value of Access-Control-Allow-Origin should be the value of the
Origin header sent with the ad request.

Setting the Access-Control-Allow-Credentials header to true will ensure that cookies will
be sent and received properly.

For more information, visit http://www.w3.org/TR/cors

2.6 XML Namespace
Whenever DAAST is used in conjunction with any other XML template, a namespace should be
declared for each so that the elements of one are not confused with the elements of another.

For more information, visit: http://www.w3.org/TR/REC-xml-names/

© 2014 Interactive Advertising Bureau 21 DAAST_v1.0_Draft

http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://kb2.adobe.com/cps/142/tn_14213.html
http://w3.org/TR/cors
http://www.w3.org/TR/REC-xml-names/

3 DAAST Implementation Details
This section provides detailed requirements for ad servers and audio players that wish to
consider themselves compliant with DAAST guidelines, thus ensuring that any two DAAST-
compliant systems behave as expected and therefore interoperable. Both the general DAAST
concepts and the requirements for different ad formats are provided.

3.1 General DAAST Document Structure
A DAAST-compliant ad response is a well-formed XML document, compliant with XML 1.0 so
that standard XML requirements such as character entities and <!--XML comments--> should
be honored. It must also pass a schema check against the DAAST 1.0 XML Schema Definition
(XSD) that is distributed in conjunction with this document. Lastly, it must conform to certain
additional dependencies that cannot be expressed in the DAAST 1.0 XSD. These dependencies
are outlined in this section and further described throughout this document.

3.1.1 Declaring the DAAST response
All DAAST responses share the same general structure. Each DAAST response is declared
with <DAAST> as its topmost element along with the version attributes indicating the official
version with which the response is compliant. For example, a DAAST 1.0 response is declared
as follows:

<DAAST version=”1.0”>
As with all XML documents, each element must be closed after details nested within the
element are provided. The following example is a DAAST response with one nested <Ad>
element.

<DAAST version=”1.0”>
 <Ad>
 <!--ad details go here-->
 </Ad>
</DAAST>

3.1.2 The Root <Ad> Element
Within the <DAAST> element are one or more <Ad> elements. Advertisers and audio content
publishers may associate an <Ad> element with a line item audio ad defined in contract
documentation, usually an insertion order. These line item ads typically specify the creative to
play, price, delivery schedule, targeting, and so on. In DAAST, an <Ad> element contains all of
the information necessary for the audio player to play and track the Ad creative, and often maps
back to the line item for the audio ad in a contract between parties.

While the association of the DAAST <Ad> element with a line item in a contract is common, it’s
not always the case. Regardless of how contracts define an ad, DAAST defines ads in a very
structural way as described in the following sections.

A DAAST response may offer multiple ads. A single <Ad> element is most common, and
represents the case where only a single ad is to be played by the audio player. Other responses
may include an ad pod or “ad buffet.” The difference between and ad pod and ad buffet is that

© 2014 Interactive Advertising Bureau 22 DAAST_v1.0_Draft

ads in an ad pod are sequenced and played in a specified order. An ad buffet is a collection of
ads that can be played in any order. Which ads or how many ads are played in an ad buffet is
optional, but in an ad pod, all ads must be played and in the order specified.

The following diagram illustrates how the <Ad> element may be represented in a DAAST
response.

When multiple ads, whether part of a Pod or a collection of stand-alone ads, are included in a
DAAST response, the audio player is only required to support multiple ad playbacks if it has
declared that it supports multiple ads or ad pods. If the audio player cannot execute an ad
response with multiple ads, it can decline from loading the ad resources and send an error
code. See section 3.2.3 for details on Ad Pods.

Audio Player
Implementation
Note

If multiple <Ad> elements are provided with sequence attributes, they must be played as a
Pod when the Ad Pod format is supported. If not supported or the Pod cannot be played, the
audio player should report an error using the error-tracking URI provided.

3.1.2.1 Ad Attributes
Two attributes are available for the <Ad> element:

x id: an ad server-defined identifier string for the ad
x sequence: a number greater than zero (0) that identifies the sequence in which an ad

should play; all <Ad> elements with sequence values are part of a pod and are intended
to be played in sequence

3.1.2.2 Ad Structure
Each <Ad> contains a single <InLine> element or <Wrapper> element (but never both) as
illustrated in the following diagram.

© 2014 Interactive Advertising Bureau 23 DAAST_v1.0_Draft

3.1.3 The <Wrapper> Element
The <Wrapper> element contains a URI reference to another ad server for an ad. When the first
ad server, or primary ad server, responds to a DAAST request, it may not provide an inline ad.
Instead, it will respond with a wrapper that points to a secondary ad server, or vendor ad server
(often called a third party ad server). The secondary ad server may provide the <InLine> ad or
may provide a secondary <Wrapper> response that points to yet another ad server. Eventually,
the last ad server in the ad supply chain must respond with an <InLine> ad that provides all
required elements to serve the ad.

The following diagram illustrates how a chain of wrappers leads to an inline ad:

See section 3.3.1 for more details on Wrapper ads.

3.1.4 The <InLine> Element
The last ad server in the ad supply chain serves an <InLine> element. Within the nested
elements of an <InLine> element are all the files and URIs necessary to display the ad.

3.1.4.1 Required <InLine> Elements
Contained directly within the <InLine> element are the following required elements:

x <AdTitle>: the common name of the ad
x <Impression>: a URI that directs the audio player to a tracking resource file that the

audio player should request when the ad begins to play
x <Creatives>: the container for one or more <Creative> elements
x <Category>: for use to identify the ad category code as defined in the IAB Quality

Assurance Guidelines* (QAG) and listed in the IAB OpenRTB specification. Ad content
should be coded at the 2nd and 3rd tier of the QAG contextual Content Classification.

*For information about the Quality Assurance Guidelines, please visit http://www.iab.net/qag. The Quality Assurance
ad category codes are listed in Appendix A in this document and in the IAB OpenRTB specification:
http://www.iab.net/media/file/OpenRTB_API_Specification_Version2.0_FINAL.PDF

© 2014 Interactive Advertising Bureau 24 DAAST_v1.0_Draft

http://www.iab.net/qag
http://www.iab.net/media/file/OpenRTB_API_Specification_Version2.0_FINAL.PDF

Thus far, the DAAST response structure can be represented as follows:

3.1.4.2 Optional <InLine> Elements
The following may also be contained within the <InLine> element, but these elements are
optional:

x <AdSystem>: the name of the ad server that returned the ad
x <Description>: a string value that provides a longer description of the ad.
x <Advertiser>: the name of the advertiser as defined by the ad serving party. This

element can be used to prevent playing ads with advertiser competitors. Ad serving
parties and publishers should identify how to interpret values provided within this
element. As with any optional elements, the audio player is not required to support it.

x <Expires>: the number of seconds in which the ad is valid for execution. In cases where
the ad is requested ahead of time, this timing indicates how many seconds after the
request that the ad expires and cannot be played. This element is useful for preventing
an ad from playing after a timeout has occurred.

x <Survey>: a URI to a survey vendor that could be the survey, a tracking pixel, or
anything to do with the survey. Multiple survey elements can be provided. A type
attribute is available to specify the MIME type being served. For example, the attribute
might be set to type=”text/javascript”. Surveys can be dynamically inserted into the
DAAST response as long as cross-domain issues are avoided.

x <Error>: a URI representing an error-tracking pixel; this element can occur multiple
times. Errors are defined in section 3.3.2.3.

x <Pricing>: provides a value that represents a price that can be used by real-time
bidding (RTB) systems. DAAST is not designed to handle RTB since other methods
exist, but this element is offered for custom solutions if needed. If used, the following two
attributes must be identified:

o model: identifies the pricing model as one of “CPM”, “CPC”, “CPE”, “CPV”, or
“CPO”.

o currency: the 3-letter ISO-4217 currency symbol that identifies the currency of
the value provided (i.e. USD, GBP, etc.)

If the value provided is to be obfuscated/encoded, publishers and advertisers must
negotiate the appropriate mechanism to do so. When included as part of a DAAST
Wrapper in a chain of Wrappers, only the value offered in the first Wrapper need be
considered.

© 2014 Interactive Advertising Bureau 25 DAAST_v1.0_Draft

x <Extensions>: XML node for custom extensions, as defined by the ad server. When
used, a custom element should be nested under <Extensions> to help separate custom
XML elements from DAAST elements. The following example includes a custom xml
element within the Extensions element.
<Extensions> <CustomXML>…</CustomXML></Extensions>

3.1.5 DAAST Tracking
Tracking an ad served in DAAST format is done using a collection of DAAST tracking elements
at different levels in the DAAST response. These tracking elements each contain a URI to a
resource file or location on the ad server that sent the DAAST response. The resource file is
usually (but not always) a 1x1 transparent pixel image (i.e. tracking pixel) that when called,
records an event that is specific to that tracking pixel. The tracking pixel need not be rendered;
just requested.

Audio Player
Implementation
Note

The audio player is responsible for requesting tracking pixels at appropriate times
during the execution of a DAAST ad response. In the case where the audio player
is not aware of the ads it plays and instead uses an ad-injection server to receive
ads, then the ad-injector server is responsible for requesting tracking pixels at the
appropriate times.

Most tracking elements are optional for the ad server to include, but if included, the audio player
or a party acting on the audio player’s behalf (such as an ad-injection server) is required to
request the resource file from the URI provided at the appropriate times. Advertisers and
publishers depend on accurate tracking records for billing, campaign effectiveness, market
analysis, and other important business intelligence and accounting. Good tracking practices
throughout the industry are important to the success and growth of digital audio advertising.

General
Implementation
Note

The audio player sends requests to the URIs provided in tracking elements;
however, the audio player is not required to do anything with the response that is
returned. The response is only to acknowledge an event and to comply with the
HTTP protocol. This response is typically a 200 with a 1x1 pixel image in the
response body (although the response could be of any other type).

3.1.5.1 Summary of DAAST Tracking Elements
The following list of DAAST tracking elements summarizes tracking options offered at each level
in DAAST.

<DAAST> Tracking Elements
x <Error> used when a “no ad” response is received

<InLine> and <Wrapper> Tracking Elements

x <Error> used to track when the InLine ad could not be served and why
x <Impression> used to track when the ad “impression” metric should be counted. Please

note that as of the release of this document an industry standard definition for an audio
impression had not yet been defined. DAAST implementers should be transparent about
how they define audio impressions until an industry standard definition is formally
defined.

© 2014 Interactive Advertising Bureau 26 DAAST_v1.0_Draft

General
Implementation
Note

As of the release of this document, a standard for measuring audio impression had
not yet been developed. DAAST implementers should be transparent about how
they define audio impressions until an industry standard definition is formalized.

<Linear> Tracking Elements
x <TrackingEvents> used to contain tracking events using the <Tracking> element for

IAB-defined tracking events. While tracking events have not been defined for streaming
audio, any of the events defined for digital video can be used here. See section 3.2.1.7
for details on available tracking events.

x <AudioInteractions> is used to track listener engagement with the ad. Two types of
engagement are tracked with a <ClickTracking> element to track clicks in wrappers:

o <ClickThrough> tracks an event that takes the listener away from the ad-
sponsored content.

o <CustomClick> tracks any type of interaction with the ad that is not included in
the TrackingEvents/Tracking element.

o <ClickTracking> used in a Wrapper response to track the ClickThrough for the
resulting InLine ad or used in the InLine ad to track the ClickThrough when the
<ClickThrough> URI lacks a tracking component or because the creative
handles the click.

x <IconClicks> a container in the Icons/Icon element for elements of the following
types:

o <IconClickThrough> redirects the listener to the supplied URI and may track the
click.

o <IconClickTracking> used to track the icon click when the click cannot be
tracked using <IconClickThrough>. Also used in a wrapper to track the
clickthrough for creative that is not included in the wrapper.

x <IconViewTracking> tracks that the icon was displayed.

<Companion> Tracking Elements (See Section 3.2.2.7 for more information)
x <CompanionClickThrough> redirects the listener to the supplied URI and may track

the click. <CompanionClickTracking> used to track the clickthrough click when it
cannot be tracked using <CompanionClickThrough>. Also used in a wrapper to track
the clickthrough for creative that is not included in the wrapper.

All tracking elements are available in both the InLine and Wrapper formats EXCEPT for the
<Error> element at the <DAAST> level since it is only used when an InLine response is not
returned.

3.1.5.2 Companion Click Tracking
Companion creative that are of a <StaticResource> type, such as an image, need a way to
provide a clickthrough URI that directs users to the advertiser’s Webpage when they click the
ad. The DAAST element <CompanionClickThrough> enables advertisers to include a
clickthrough URI for static image creative. In most cases, this clickthrough also provides
tracking information that notifies appropriate parties that the ad was clicked.

However, when the resource type is one of IframeResource or HTMLResource, the creative can
provide its own clickthrough. In this case the <CompanionClickTracking> element may be
used to track the click.

© 2014 Interactive Advertising Bureau 27 DAAST_v1.0_Draft

The table below describes which element to use for select static resource creative in DAAST
InLine and Wrapper responses.

StaticResource Creative Type InLine Creative Wrapper Creative

Image <CompanionClickThrough> <CompanionClickTracking>*

Flash with no apiFramework <CompanionClickThrough> <CompanionClickTracking>*

Flash with apiFramework =
clickTAG <CompanionClickThrough> <CompanionClickTracking>*

Any static resource where
the ad unit handles the
clickthrough

<CompanionClickTracking> <CompanionClickTracking>

*When tracking clicks for Companion creative in a Wrapper that also include the creative resource files, then
Companion creative should be treated as InLine creative and the <CompanionClickThrough> element should be
used.

3.1.5.3 The <Impression> Element
When an impression occurs in a DAAST audio ad, multiple parties can be notified using multiple
<Impression> elements. The <InLine> element in a DAAST response may contain one or
more <Impression> elements. Each <Impression> element contains exactly one child
CDATA-wrapped URI. The included URI is used to notify a single party that an impression has
occurred. Additional <Impression> elements are used to notify each additional party.

DAAST URIs and any other free text fields that might contain potentially dangerous characters
should be wrapped in a CDATA block as demonstrated in the following example:

<Impression id=”myserver”>

<![CDATA[
http://ad.server.com/impression/dot.gif
]]>

</Impression>

© 2014 Interactive Advertising Bureau 28 DAAST_v1.0_Draft

Ad Server
Implementation
Note

All URIs or any other free text fields containing potentially dangerous characters
contained in the DAAST document should be wrapped in CDATA blocks.

3.1.5.4 Impression vs. “Start” Event
Impression tracking URIs should be used to track the ad play. However, an ad may be made up
of multiple creative. If the advertiser wants to track when individual ad creative are started in
addition to tracking the audio ad impression, the DAAST response should include a “start”
event under the <TrackingEvents> element for the creative to be tracked. See the tracking
notes in sections were relevant.

3.1.5.5 Multiple Impressions
The use of multiple impression URIs allows the ad server to share impression-tracking
information with other ad serving systems, such as a vendor ad server employed by the
advertiser. When multiple impression elements are included in a DAAST response, the audio
player should request all impressions at the same time. Any significant delay between
impression requests may result in count discrepancies between ad serving systems.

Video Player
Implementation
Note

If multiple <Impression> elements are provided, they should be requested at the
same moment in time or as close in time as possible. If any of the requests are
delayed significantly, discrepancies may result in the participating ad serving
system counts.

3.1.5.6 Tracking Records for Multiple Parties
Multiple parties involved in a digital advertising campaign may all want their own tracking
records for an audio ad served in a DAAST format. There are different ways to do this, but
DAAST enables the use of multiple tracking elements—each of which can provide a URI to the
server of any party requesting notification of tracking information on the ad.

Tracking elements for each of the two creative elements (Linear and Companion) all include an
id attribute. As with multiple Impressions described in the previous section, whenever multiple
tracking elements of the same id are provided, the tracking resource for each should all be
requested at the same time. Any significant delay in tracking resource requests can result in
discrepancies in the participating parties’ systems.

3.1.6 The <Creatives> Element
An ad in DAAST may be made up of several creative files. Despite how many or what type of
creative are included as part of the Ad, all creative files should generally represent the same
creative concept.

Within the <InLine> element is one <Creatives> element. The <Creatives> element provides
details about the files for each creative to be included as part of the ad experience. Multiple
<Creative> (singular) may be nested within the <Creatives> (plural) element. Note the plural
spelling of the primary element <Creatives> and the singular spelling of the nested element
<Creative>.

Each nested <Creative> element contains one of: <Linear> or <CompanionAds>.

© 2014 Interactive Advertising Bureau 29 DAAST_v1.0_Draft

The following diagram represents a <Creatives> element that contains a Linear Ad with
complimentary Companion ads.

The <Creative> element may contain a sequence attribute that identifies the numerical order in
which each creative should play. Different than an ad pod, the creative sequence attribute
identifies the order in which creative for a single ad should play. A multi-part ad in which two
creative are played in sequence represent the single ad. Sequential display of creative in the
absence of sequence values is at the video player’s discretion.

General
Implementation
Note

The <Creative> sequence attribute should not be confused with the <Ad>
sequence attribute. Creative sequence identifies the sequence of multiple
creative within a single Ad and does NOT define an ad pod. Conversely, the <Ad>
sequence identifies the sequence of multiple Ads and defines an Ad Pod. See
section 3.2.3 for details about Ad Pods.

3.1.6.1 Creative Attributes
The following attributes are available for the <Creative> element:

x id: an ad server-defined identifier for the creative
x sequence: the numerical order in which each sequenced creative should display (not to

be confused with the <Ad> sequence attribute used to define Ad Pods)
x adId: identifies the ad with which the creative is served
x apiFramework: the technology used for any included API

All creative attributes are optional.

© 2014 Interactive Advertising Bureau 30 DAAST_v1.0_Draft

3.1.6.2 DAAST Example: Linear with Companions
The following example demonstrates the basic structure of a DAAST response in XML format.
This response represents a Linear Ad with Companions. Ellipsis () represent missing
information and are used in examples throughout this document in order to highlight only the
DAAST sections being discussed.

<DAAST version=”1.0”>
<Ad>

<InLine>
<AdSystem>My Ad Server</AdSystem>
<AdTitle>Car Company</AdTitle>
<Category>IAB2-20</Category>
<Impression>...</Impression>
<Creatives>

<Creative>
<Linear>...</Linear>

</Creative>
<Creative>

<CompanionAds>...</CompanionAds>
</Creative>

</Creatives>
</InLine>

</Ad>
</DAAST>

3.1.6.3 Creative Extensions
When an API framework is needed to execute creative, a <CreativeExtensions> element can
be added under the <Creative>. This extension can be used to load an executable creative
with or without using a media file.

A <CreativeExtension> (singular) element is nested under the <CreativeExtensions>
(plural) element so that any xml extensions are separated from DAAST xml. Additionally, any
xml used in this extension should identify an xml name space (xmlns) to avoid confusing any of
the xml element names with those of DAAST.

The nested <CreativeExtension> includes an attribute for type, which specifies the MIME
type needed to execute the extension.

The creative attribute, apiFramework, identifies the API needed to execute the creative. If the
apiFramework attribute is not specified, the audio player may disregard creative. If the Ad
cannot be fully executed without an API (identified or not) that the player does not support, then
the audio player may disregard the Ad and use the <Error> element (under the <Ad> element)
to notify the ad server that the Ad could not be displayed.

© 2014 Interactive Advertising Bureau 31 DAAST_v1.0_Draft

3.2 DAAST Requirements by Compliance Format
In DAAST 1.0, an audio player may choose to support different audio ad formats while
maintaining DAAST-compliant status. Audio players may opt to support one or more of three
DAAST ad formats:

x Linear Ads
x Companion Ads*
x Ad Pods*
x Skippable Ads*

*Support for Companion Ads, Ad Pods, and Skippable Ads is optional.

Providing optional compliance formats enable audio players to be compliant with DAAST
guidelines while only supporting the formats that best suit their audio publishing model. Allowing
the option of complying with select ad formats helps to increase adoption across the industry,
making it easier for audio ad servers to increase reach across more publisher platforms.

Identifying Ad Formats in a DAAST Response
The following table summarizes the properties for elements found in a DAAST response that
represents one of the three DAAST ad formats. A check ݱ under one of the ad format columns
indicates that the DAAST element in that row should be found in the DAAST response for the
listed format.

Engineers can use the following table to program audio players that quickly identify the DAAST
Ad formats included in the DAAST response.

DAAST Ad Properties Linear Ads Companion Ads Ad Pods

<Ad> (no sequence) 9
<Ad sequence=”n”> 9
<Linear> 9
<CompanionAds> 9 *
*Companion creative must be served with a Linear creative and cannot be served alone.

Signature element properties for other formats may be found but can be ignored if they
represent an ad format not supported.

For example, if the audio player supports only Linear Ads but the DAAST response contains
<Ad> elements with sequence attributes intended to play as an Ad Pod, as long as there’s at
least one <Ad> element with no sequence attribute, the audio player can ignore the additional
sequenced <Ad> elements. But if the only options for ad formats found in the DAAST response
are those of a format the audio player doesn’t support, then the audio player can reject the ad
and notify the ad server using the <Error> element for the <Ad>.

© 2014 Interactive Advertising Bureau 32 DAAST_v1.0_Draft

Likewise, if an audio player supports multiple formats such as both Linear Ads and Companion
Ads, the signature element properties for both formats should be respected.

3.2.1 Linear Ad Format
The most common type of audio advertisement trafficked in the industry is a “linear ad”, which is
an ad that plays instead of programmed audio content (e.g. during a commercial break or in
between songs). Linear ads can be played before audio content plays (typically called pre-rolls),
in between programmed audio content segments (typically called mid-rolls or in-stream ads), or
after programmed audio content (typically called post-rolls).

The DAAST response structure that represents a Linear Ad is represented in the diagram
below.

3.2.1.1 Linear Elements
A <Linear> element has two required child elements, the <Duration> and the <MediaFiles>
element.

The following diagram represents the elements that fall directly under the <Linear> element.
Elements outlined in red are required.

© 2014 Interactive Advertising Bureau 33 DAAST_v1.0_Draft

3.2.1.2 The <Duration> Element
The ad duration of a Linear creative is expressed in the <Duration> element. Duration is
expressed in the “HH:MM:SS.mmm” format (.mmm represents milliseconds and is optional). For
example, a 30 second audio file is represented as follows:

<Duration>00:00:30</Duration>
Or alternately:

<Duration>00:00:30.000</Duration>
The .mmm extension for milliseconds should be used whenever possible to avoid stopping the
creative prematurely.

A <MediaFiles> element may contain multiple <MediaFile> elements (described in the next
section), each of which must be of the duration defined in the Linear duration element. Minor
variations resulting from the transcoding process are acceptable.

3.2.1.3 The <MediaFiles> Element
The <MediaFiles> element is a container for one or more <MediaFile> elements, each of
which contains a CDATA-wrapped URI to the media file to be downloaded or streamed for the
Linear creative.

A <MediaFiles> element may contain multiple <MediaFile> elements, each one best suited to
a different technology or device. When an ad may be served to multiple audio platforms, one
platform (i.e. device) may need the media file in a different file format than what another
platform needs. More specifically, different devices are capable of playing audio files with
different encodings and containers, and at different bitrates.

Thus, for ads delivered cross-platform, the DAAST document usually contains multiple
alternative <MediaFile> elements, each with different container-codec versions and at a few
different bitrates. Only the media file best matched to the audio player system should be used.
The creative content should be the same for each media file.

Ad Server
Implementation
Note

For ads to be delivered cross-platform, the ad server should return a DAAST
response containing multiple alternative <MediaFile> elements, each with
different container-codec versions and at a few different bitrates.

The <MediaFile> element also has several attributes that the audio player uses to select a
media file to play for the user. The audio player must choose only one media file to play, and
should choose the one that will play best for the user on his or her device and with the devices
existing capabilities (audio decoder, network connection, etc.).

3.2.1.4 Media File Attributes
The following attributes are available for the <MediaFile> element.

Required Attributes:

x id: an identifier for the media file
x delivery: either “progressive” for progressive download protocols (such as HTTP) or

“streaming” for streaming protocols.
x type: MIME type for the file container. Popular MIME types include, but are not limited to

“audio/vnd.wav” for .wav files, “audio/mpeg” for MP3, and “audio/mp4” for MP4

© 2014 Interactive Advertising Bureau 34 DAAST_v1.0_Draft

Optional Attributes:

x codec: the codec used to encode the file which can take values as specified by RFC
4281: http://tools.ietf.org/html/rfc4281

x *bitrate: (not used if optional minBitrate and maxBitrate are used) average bits per
second for variable bitrate audio.

x minBitrate and maxBitrate: for progressive load audio, the bitrate value specifies the
average bitrate for the media file; otherwise the minBitrate and maxBitrate can be used
together to specify the minimum and maximum bitrates for streaming audio ads.

x apiFramework: identifies the API needed to execute an interactive media file

Audio Player
Implementation
Note

Multiple media files are often included in creative elements in order to ensure that
at least one of the files can display most optimally to the user. The audio player is
required to choose only one <MediaFile> element to use, and should choose the
one that will play best to the user on his or her device.
Some audio players may only look at the first media file available and disregard
the creative when it can’t be played, but the first media file provided may not be the
most appropriate media file to play to the user. The audio player should poll all
media files before choosing one to play.

3.2.1.5 The <AdParameters> Element (Optional)
Some ad serving systems may want to send data to the media file when first initialized. For
example, the media file may use ad server data to identify the context used to display the
creative, what server to talk to, or even which creative to play. The optional <AdParameters>
element for the Linear creative enables this data exchange.

The optional attribute xmlEncoded is available for the <AdParameters> element to identify
whether the ad parameters are xml-encoded. If present, the audio player must use xml to
decode the data. Audio players may not be able to xml-decode data, so data should only be
xml-encoded when being served to audio players capable of xml-decoding the data.

The <AdParameters> value in DAAST should be wrapped in a CDATA block.

General
Implementation
Note

The precise mechanism for passing the AdParameters information to the
executable media for other APIs depends on the API framework that is used and
whether the API is programmed to look for the <AdParameters> element or if
some other mechanism is expected.

3.2.1.6 The <AdInteractions> Element (Optional)
While audio ads are not clicked in most cases, today’s technology offers opportunities for
listeners to interact with the content in other ways. For example, a listener may respond to an ad
that uses voice recognition by saying, “LEARN MORE” or “CALL ME.” Other methods for
responding to advertiser content include device-supported functions such as shaking or tapping.

The <AdInteractions> element tracks interactions of two kinds: one that redirects the listener
away from the ad-sponsored content and one that includes interactions with the ad while
remaining in context of the ad-sponsored content. While audio ads are not typically clicked, the

© 2014 Interactive Advertising Bureau 35 DAAST_v1.0_Draft

http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281
http://tools.ietf.org/html/rfc4281

DAAST tracking elements use the word “click” for tracking ad interactions whether clicked or
not.

The following three elements in <AdInteractions> help track ad interactions:

x <ClickThrough> contains a URI that redirects the listener away from the ad-sponsored
content. The URI may also track the interaction.

x <ClickTracking> used in a Wrapper response, this element contains a URI for tracking
the ClickThrough in the resulting Inline response. It may also be used to track the
ClickThrough for an Inline response when the <ClickThrough> URI doesn’t also track
the click, such as when an interactive creative handles the click.

x <CustomClick> contains a URI to track any kind of interaction with the ad in which
completion of the interaction either keeps the listener interacting with the ad or returns
the listener to the ad-sponsored content.

The following attributes can be used with the three click elements listed above to describe
designed interactions:

x method: describes how the listener will interact. (ex: voice, shake-up, tap)
actionType: describes the action that results upon listener interaction. (ex: phone call, opening
a webpage, sending an email, etc.)

General
Implementation
Note

The ad vendor can use the attributes, method and actionType, to describe the ad
interaction as designed; they are not a request for the player to define the
interaction during ad play.

3.2.1.7 The <TrackingEvents> Element (Optional)
In an effort to establish a baseline for communication on ad metrics in video, the IAB worked
with member companies to define metrics for digital video. However, industry-defined metrics
have not yet been defined for digital audio. In VAST the <TrackingEvents> element is used to
track these industry-defined metrics in video. In DAAST, the <TrackingEvents> element can
be used to track any of the digital video metrics that apply to digital audio ads.

Establishing industry-defined metrics for digital audio is important to the IAB and its members.
When completed, those metrics will be provided in a DAAST update. Until then, the
AdInteractions/CustomClicks element can be used to track any metrics that don’t fall under
the industry-defined metric events for digital video.

The IAB metrics are defined within the <TrackingEvents> element using the <Tracking>
element. The attribute, event, is used to name the metric.

© 2014 Interactive Advertising Bureau 36 DAAST_v1.0_Draft

The following values are accepted for the event attribute as applicable to audio:

x creativeView: not to be confused with an impression, this event indicates that an
individual creative portion of the ad was viewed (or played). An impression indicates the
first frame of the ad was displayed; however an ad may be composed of multiple
creative, or creative that only play on some platforms and not others. This event enables
ad vendors to track which ad creative are viewed, and therefore, which platforms are
more common.

x start: this event is used to indicate that an individual creative within the ad was loaded
and playback began. As with creativeView, this event is another way of tracking creative
playback.

x firstQuartile: the creative played for at least 25% of the total duration.
x midpoint: the creative played for at least 50% of the total duration.
x thirdQuartile: the creative played for at least 75% of the duration.
x complete: The creative was played to the end at normal speed.
x mute: the user activated the mute control and muted the creative.
x unmute: the user activated the mute control and unmuted the creative.
x pause: the user clicked the pause control and stopped the creative.
x rewind: the user activated the rewind control to access a previous point in the creative

timeline.
x resume: the user activated the resume control after the creative had been stopped or

paused.
x skip: the user activated a skip control to skip the creative after a duration indicated by

the value in the offset attribute.
x progress: the creative played for a duration at normal speed that is equal to or greater

than the value provided in an additional attribute for offset. Offset values can be time in
the format HH:MM:SS or HH:MM:SS.mmm or a percentage value in the format n%. Multiple
progress events with different values can be used to track multiple progress points in the
Linear creative timeline.

3.2.1.8 Multiple Tracking Events of the Same Type
The use of multiple tracking events of the same kind enables the ad server to share impression-
tracking information with other ad serving systems such as a vendor ad server employed by the
advertiser. When multiple tracking events of the same type (i.e. multiple “start” events) are
provided, the audio player should send tracking info for the same events simultaneously or as
close in time as possible. Any significant delay between requests may result in count
discrepancies between ad serving systems.

Audio Player
Implementation
Note

If multiple tracking events of the same type are provided, the player should send
tracking info for each at the same moment in time (or as close as possible in time).
If any of the requests are delayed significantly, discrepancies may result in the
participating ad serving system counts.

© 2014 Interactive Advertising Bureau 37 DAAST_v1.0_Draft

3.2.1.9 The <Icons> Element (Optional)
In an effort to support consumer privacy, DAAST offers the <Icons> element to provide
information about behavioral tracking and other privacy information with each ad. Advertisers
can do this by providing an interactive icon, such as the Ad Marker provided by the Digital
Advertising Alliance (DAA). Only players with a visual component are required to display any
icons.

Details about the structure and features of the <Icons> element are provided in section 3.3.3.

3.2.2 Companion Ad Format
Linear ads are often served with Companion ads—ads served outside of the audio player on the
publisher page. When these ads are served with Linear ads placed before the audio content,
the format is commonly called “pre-roll with companion.” Audio players may choose whether
they want to support this format or not. Companion ads are usually not served alone and should
be served with a Linear ad.

The DAAST response for a Linear Ad with Companions contains both a <Linear> creative and
a <CompanionAds> creative, as represented in the following example:

…
<InLine>

<Creatives>
<Creative>

<Linear>
…
</Linear>

</Creative>
<Creative>

<CompanionAds>
 <Companion>
 …
 </Companion>
</CompanionAds>

 </Creative>
 </Creatives>
</InLine>
…

3.2.2.1 Companion Ad Structure
Unlike the <Linear> element, the <CompanionAds> (plural) element may contain one or more
Companion ads, each Companion within its own <Companion> (singular) element.

© 2014 Interactive Advertising Bureau 38 DAAST_v1.0_Draft

The following diagram illustrates the structure of a DAAST InLine Ad containing Linear and
CompanionAds creative.

Each <Companion> element must specify at least one resource file that may be one of:
<StaticResource>, <IFrameResource> or <HTMLResource>. The resource used identifies the
format of the creative file and provides a CDATA-wrapped URI to the file.

3.2.2.2 Companion Resource Elements
Companion resource types are described below:

x StaticResource: Describes non-html creative where an attribute for creativeType is
used to identify the creative file format. The audio player uses the creativeType
information to determine how to display the resource:

x Image/gif, image/jpeg, image/png: displayed using the HTML tag and the
resource URI as the src attribute.

x Application/x-javascript: displayed using the HTML tag <script> and the resource
URI as the src attribute.

x application/x-shockwave-flash: displayed using a Flash™ player
x IFrameResource: Describes a resource that is an HTML page that can be displayed

within an Iframe on the publisher’s page.
x HTMLResource: Describes a “snippet” of HTML code to be inserted directly within the

publisher’s HTML page code.

DAAST 1.0 allows for multiple resource files in one <Companion> element. The audio player
should poll the resource files in each <Companion> element to find the most appropriate file to
display.

© 2014 Interactive Advertising Bureau 39 DAAST_v1.0_Draft

The following diagram illustrates a <Companion> element with two resource files. The audio
player should display the Companion creative using the most appropriate resource file provided.

Audio Player
Implementation
Note

DAAST 1.0 allows multiple resource elements for one <Companion> element. The
audio player should poll <Companion> elements to find the most appropriate
creative to display. For example, if the content publisher accepts html resource
files, then the audio player should look for the <HTMLResource> element among
the available resource files in the <Companion>.

The following DAAST example is a sample of a <Companion> element with multiple resource
files:

<CompanionAds required=”all”>
 <Companion id=1>
 <StaticResource creativeType=”image/jpg”>
 <![CDATA[http://AdServer.com/companion1.jpg]>
 </StaticResource>
 <HTMLResource>
 <!CDATA[http://AdServer.com/companion1.html]>
 </HTMLResource>
 </Companion>
 <Companion id=2>
 <StaticResource creativeType=”image/jpg”>
 <![CDATA[http://AdServer.com/companion2.jpg]>
 </StaticResource>
 <HTMLResource>
 <!CDATA[http://AdServer.com/companion2.html]>
 </HTMLResource>
 </Companion>
</CompanionAds>

© 2014 Interactive Advertising Bureau 40 DAAST_v1.0_Draft

3.2.2.3 Other Companion Elements
The following elements are optional under the <Companion> element:

x AltText: used to provide an image description that displays when a user mouses over
the Companion creative

x CompanionClickThrough: provides a URL to an advertiser-related page when the user
clicks the ad; only necessary for static resource files that lack technology to provide a
clickthrough

x CompanionClickTracking: used to track Companion clickthroughs
x TrackingEvents: a container for the <Tracking> element used to track defined metrics

defined by the event attribute
x AdParameters: used to pass information to the creative unit; includes the attribute

xmlEncoded that is a Boolean value for identifying whether the <AdParameters> value is
xml encoded.

3.2.2.4 The “required” Attribute for CompanionAds
In DAAST 1.0, the optional required attribute for the <CompanionAds> element provides
information about which Companion creative to display when multiple Companions are supplied
and whether the Ad can be displayed without its Companion creative. The value for required
can be one of three values: all, any, or none.

The expected behavior for displaying Companion ads depends on the following values:

x all: the audio player must attempt to display the contents for all <Companion> elements
provided; if all Companion creative cannot be displayed, the Ad should be disregarded
and the ad server should be notified using the <Error> element

x any: the audio player must attempt to display content from at least one of the
<Companion> elements provided (i.e. display the one with dimensions that best fit the
page); if none of the Companion creative can be displayed, the Ad should be
disregarded and the ad server should be notified using the <Error> element

x none: the audio player may choose to not display any of the Companion creative, but is
not restricted from doing so; the ad server may use this option when the advertiser
prefers that the master ad be displayed with or without the Companion creative

If not provided, the audio player can choose to display content from any or none of the
<Companion> elements. In all cases when Companions are displayed, the audio player should
display Companion creative at the same time as the Linear master creative.

3.2.2.5 Companion Attributes
The following attributes are available for the <Companion> element.

Optional attributes:

x width: the pixel width of the placement slot for which the creative is intended
x height: the pixel height of the placement slot for which the creative is intended
x id: an optional identifier for the creative
x assetWidth: the pixel width of the creative
x assetHeight: the pixel height of the creative
x expandedWidth: the maximum pixel width of the creative in its expanded state

© 2014 Interactive Advertising Bureau 41 DAAST_v1.0_Draft

x expandedHeight: the maximum pixel height of the creative in its expanded state
x apiFramework: the API necessary to communicate with the creative if available
x adSlotID: used to identify desired placement on a publisher’s page; values to be used

should be discussed between publishers and advertisers
x required: a value of either “all,” “any,” or “none” identifying whether (and how many) of

the companion creative should be displayed with the ad (see section 3.2.2.4 for details)
x logoTile: a Boolean value that identifies the companion as a logo tile. One way to use

companion ads in digital audio is to display an ad’s logo or other thumbnail-sized image
in place of the artist tile for content when the ad is playing. Additional logo- attributes
identify the title, artist, and URL listed below.

x logoTitle: A display title for the logo file being displayed.
x logoArtist: typical nomenclature for display of artist tiles, this field is used to identify the

brand for which the logo is being displayed.
x logoURL: the URL for directing listeners to brand content if the listener interacts with the

tile.

3.2.2.6 The Optional adSlotID Attribute for <Companion>
Advertisers and publishers can use the adSlotID attribute to match Companion creative to
appropriate placement areas reserved on the Publisher’s page. Values for this attribute have yet
to be determined, as long as the value returned by the ad server matches one offered by the
audio player and the dimensions are compatible, the audio player should respect the ad server’s
suggestion.

3.2.2.7 Companion Tracking Details
A <Companion> element may contain the <TrackingEvents>, <CompanionClickThrough> or
<CompanionClickTracking> elements, as represented in the following diagram.

The <TrackingEvents> element may contain one or more <Tracking> elements, but the only
event available for tracking under each Companion is the creativeView event. The
creativeView event tracks whether the Companion creative was viewed. This view does not
count as an impression because impressions are only counted for the Ad and the Companion is
only one part of the Ad.

© 2014 Interactive Advertising Bureau 42 DAAST_v1.0_Draft

The <CompanionClickThrough> element is provided to enable a clickthrough for any static
resources that cannot provide clickthroughs of their own.

The <CompanionClickTracking> element is used to track clicks in the companion creative
when the creative handles the clickthrough using an interactive API such as VPAID.

See section 3.1.5.2 for details about when to use the clickthrough and click-tracking elements.

As with all tracking events that are implemented, the audio player should send a request to the
tracking URI provided. When multiple creativeView tracking events are provided, the audio
player must send requests for each of the events provided simultaneously or as close in time as
possible. Any delay in sending requests for all creativeView tracking events may result in
count discrepancies for the participating ad servers.

Ad Server
Implementation
Note

A <CompanionClickThrough> element is provided to enable a clickthrough for
Companion creative that is a <StaticResource>. Creative resources that are
provided under <IFrameResource> and <HTMLResource> can provide their
own clickthrough.

3.2.3 Ad Pods
A pod of ads is a sequence of Linear ads that are played back to back such as commercial
breaks during a broadcast radio program. Pods can be used to create a Radio-like ad
experience.

3.2.3.1 Ad Pods and Stand-Alone Ads
A pod of ads is described by a single DAAST response with multiple <Ad> elements, each with a
distinct sequence attribute, starting with 1 and numbered sequentially. Only Linear ads can
comprise a Pod and all <Ad> elements with sequence numbers are part of the Pod. All <Ad>
elements with no sequence number are not part of the Pod and are considered to be stand-
alone ads.

The following diagram represents the structure of a DAAST response with three sequential ads
considered part of an Ad Pod and one stand-alone Ad.

© 2014 Interactive Advertising Bureau 43 DAAST_v1.0_Draft

A Pod of ads is intended to be played in sequence and in its entirety. In this format, a DAAST
response can contain only one Ad Pod. Stand-alone ads can be considered part of an “ad
buffet” from which a audio player can choose as many or as few ads as needed in a given
circumstance. Stand-alone ads may be provided as a secondary choice when the Ad Pod
cannot play or when a particular Ad in the Pod cannot play. When an Ad Pod follows a Wrapper,
attributes can be used to managed which ads should be played and are described in section
3.3.1.2.

When the Ad Pod is served as a singular Inline response (without a Wrapper), playing the Pod
or selecting one or more stand-alone ads from the buffet is left to the audio player’s discretion
and may involve instructions passed to the player by mechanisms outside of the scope of
DAAST. The IAB VMAP guideline includes such an option. See section 1.4.3 and the IAB VMAP
guideline document for more information.

3.2.3.2 Playing a Pod of Ads
When electing to play a Pod of ads returned by the ad server, the audio player should play the
ads in the Pod in the prescribed sequence and should play as many of the ads as possible. The
player may elect not to play all of the ads (truncating the Pod from the end) if either: the ads
cannot be played because they cannot physically fit into the stream (such as when time is
limited in a live stream) or if the entire Pod of ads returned by the ad server violated any limits
specified by the calling audio player (i.e. number of ads to return, or maximum Pod duration).

When an Ad Pod is the result of following a DAAST <Wrapper> the same impression and
tracking URIs in the DAAST <Wrapper> are called as each Ad is played in the Pod.

Should an Ad in a Pod fail to play after a “no ad” response from a secondary ad server, the
audio player should substitute an un-played stand-alone Ad from the response if provided. See
section 3.3.2.4 for details on a no ad response.

3.2.3.3 Ad Pod Example
In the following DAAST example, the first three <Ad> elements form the Pod; the last two are
stand-alone ads. The audio player must choose between displaying the three-ad Pod, or one or
more of the standalone ads. Within the DAAST response, the three elements of the Pod need
not appear in the right order or back to back, but the audio player must find and play Pod ads
sequentially.

The example below shows an example of an ad pod in which elements are nicely organized
(left), and another example in which the elements are out of order (right) but should yield the
same result.

<DAAST>
 <Ad sequence=1>…</Ad>
<Ad sequence=2>…</Ad>
<Ad sequence=3>…</Ad>
<Ad>…</Ad>
<Ad>…</Ad>
</DAAST>

<DAAST>
 <Ad sequence=2>…</Ad>
<Ad>…</Ad>
<Ad sequence=1>…</Ad>
<Ad sequence=3>…</Ad>
<Ad>…</Ad>
</DAAST>

3.2.4 Skippable Linear Creative
Skippable Linear creative are creative that listeners can choose to skip, typically after a
prescribed number of seconds have passed. Skippable creative is an innovative concept in

© 2014 Interactive Advertising Bureau 44 DAAST_v1.0_Draft

digital audio, but some companies have begun to experiment with technology such as voice
command to enable the kind of interactions that would make skipping ads possible.

In support of audio creative that can be skipped, DAAST includes the following features:

x skipoffset attribute for the <Linear> element
x skip event
x progress event

3.2.4.1 Skipoffset Attribute
To specify that a Linear creative can be skipped, the DAAST ad file must include the
skipoffset attribute in the <Linear> element. This skipoffset value indicates when the skip
control should be provided after the creative begins playing. The value for skipoffset is a time
value in the format HH:MM:SS or HH:MM:SS.mmm. The .mmm value in the time offset represents
milliseconds and is optional. As an alternative, a percentage can be used in the format n%,
where n represents the percentage of ad duration that must play before the skip control is made
available.

Skipoffset examples:

Time skipoffset: The following example provides a skipoffset of :05 seconds.

<Creative>
 <Linear skipoffset=”00:00:05”>…</Linear>
</Creative>
Percentage skipoffset: The following example provides a skipoffset of 10%.

<Creative>
 <Linear skipoffset=”10%”>…</Linear>
</Creative>

Audio content publishers and advertisers should negotiate an acceptable skipoffset value.
The audio player should send an erroe when a creative includes an unacceptable skipoffset
value.

Audio players that support ads that the listener can skip must provide a “skip” control in the
interface at the time indicated by an acceptable skipoffset value. If no skipoffset value is
provided, then the creative is considered a standard Linear creative and may be handled as
such.

The UI design for skip controls is left to the discretion of the audio publisher and can be
negotiated with the advertiser.

3.2.4.2 Skip Event
The skip event is provided to support tracking Linear creative that is skipped and is only
available for Linear creative. When the listener skips a Skippable creative, the audio player must
request the tracking resource from the skip event URI provided.

© 2014 Interactive Advertising Bureau 45 DAAST_v1.0_Draft

The following example provides a tracking URI for the skip event in a DAAST response:

<TrackingEvents>
<Tracking event="skip">

<![CDATA[
http://ad.server.com/skip/dot.gif
]]>

</Tracking>
</TrackingEvents>
The skip event should not be confused with the close event. The close event should only be
triggered if the user takes action to close the player or the window. The skip event, on the other
hand, is triggered when a specific skip control is activated.

3.2.4.3 Progress Event
Whether or not an ad is skipped, advertisers and publishers need the flexibility to negotiate
when a Skippable Linear creative counts as an impression. For example, some vendors who
support skippable ads may count an impression when at least 30 seconds of the creative has
played. The progress event includes an offset attribute that provides a time value (HH:MM:SS
or HH:MM:SS.mmm) or percentage (n%) value that indicates the timing for recording an
impression. The creativeView event can be used to track a view in this case, but details
should be negotiated between the publisher and advertiser.

The following example provides a tracking URI for a progress event that is triggered after the
Linear creative has played for at least 30 seconds.

<TrackingEvents>
<Tracking event="progress" offset=”00:00:30.000”>

<![CDATA[
http://ad.server.com/view.gif
]]>

</Tracking>
</TrackingEvents>
Video players that support Skippable Linear Ads must send a request to the URI provided for
the progress event, if one is provided. If progress offsets are provided in percentage values
when duration is unknown, then the video player can ignore the progress event. Multiple
progress events with different offset values may be used to track different time points in the
Linear creative timeline.

Regardless of the progress event record, publishers and advertisers must negotiate the terms
for counting views based on progress events.

General
Implementation
Note

Video players complying with the Skippable Ad format must support the progress
event, but actual counts based on progress values are dependent on terms
negotiated between the publisher and advertiser.

The progress event provides metrics comparable to the quartile tracking events (i.e. first
quartile, midpoint, third quartile, complete) when progress offsets are set at 25%, 50%, 75% and
100%. However, progress events are tracked separately so quartile events must still be
supported when provided.

© 2014 Interactive Advertising Bureau 46 DAAST_v1.0_Draft

3.3 General DAAST Requirements
In DAAST 1.0, certain general areas of DAAST technology must be supported. These areas of
technology are:

x DAAST Wrapper Ads (Ad Server Redirects): enables cross-platform interoperability
when multiple ad serving systems are involved.

x Error Reporting: enables improved diagnostics across the industry, reducing errors and
improving the overall audio ad experience for user and for the systems involved.

x Industry Icon Support (for visual players only): supports delivery, display, and
tracking of industry icons such as the AdChoices program offered by the DAA.

x Macros: supports metadata collection for servers.

The following sections provide details about supporting these areas of DAAST Technology.

3.3.1 DAAST Wrapper Ads (Ad Server Redirects)
Wrapper ads provide a way for one ad server to redirect an audio player to a secondary ad
server in order to retrieve an ad, multiple ads, or yet another DAAST Wrapper.

One ad server may redirect to another for a variety of reasons:

The first ad server has selected a specific advertiser campaign to fill the inventory, where the
advertiser or a secondary ad server is hosting the DAAST creative for the campaign. In this
case the redirect instructs the secondary ad server to return specific ads from a particular ad
campaign.

The first ad server is delegating a specific piece of inventory for either a single ad or an entire
Pod of ads to the secondary ad server to fill with any ads that are within an established
agreement between the two parties.

An ad server may have no ad to return and may return a redirect to a backfill provider.

The following sections describe DAAST Wrapper responses in detail.

3.3.1.1 General Wrapper Structure
A DAAST Wrapper is used to redirect the audio player to a secondary location for the Ad’s
resource files and can also redirect to yet another DAAST response. Using tracking events in
the Wrapper, impressions and interactions can be tracked for the Ad that is eventually
displayed.

© 2014 Interactive Advertising Bureau 47 DAAST_v1.0_Draft

The structure of a Wrapper Ad is illustrated in the diagram below. Dotted lines show optional
elements.

Directly under the <Wrapper> element are three required elements:

x <Impression>: Contains a URI to a tracking resource that is requested when the Inline
Ad is displayed

x <DAASTAdTagURI>: The redirecting URI to the next DAAST response, which may be
either another Wrapper ad or the Inline response

Four optional elements are also available:

x <AdSystem>: The name of the system serving the DAAST Wrapper response; the
attribute version can be used to identify the DAAST version used by the system

x <Error>: A URI to a tracking resource that is requested when an error has occurred
either in the Wrapper itself, any subsequent Wrappers, or in the final Inline Ad.

x <Extensions>: A custom XML extension; when used, a custom element should be
nested under <Extensions> to help separate custom XML elements from DAAST
elements. The following example includes a custom xml element within the Extensions
element.
<Extensions> <CustomXML>…</CustomXML></Extensions>

x <Creatives>: Contains a creative element for including a Companion ad or tracking
elements to track the subsequently served Inline ad

3.3.1.2 Wrapper Chain and Multiple Ad Management
As a gateway to additional Wrappers in a chain of DAAST responses, the Wrapper is in a
position to prevent subsequent Wrappers from being served or to instruct the audio player on
what to do with the ads in subsequent Wrappers.

For example, a Wrapper may redirect the audio player to a network for the Ad. If the target
network has no ads to offer, it may redirect to yet another network for the Ad. However, the
originating Wrapper may want to limit Ad selection to only the target network.

In another example, a Wrapper may represent an Ad in a Pod of ads and may want to allow
only one Ad to fill its place in the Pod. Or in the case of a no-ad response, the Wrapper may
provide instruction for how to select from additional ads to fill the empty opportunity placement.

© 2014 Interactive Advertising Bureau 48 DAAST_v1.0_Draft

Wrapper chain and multiple Ad management is handled with three attributes for the <Wrapper>
element in DAAST:

x followAdditonalWrappers: a Boolean value that identifies whether subsequent
wrappers after a requested DAAST response is allowed. If false, any Wrappers received
(i.e. not an Inline DAAST response) should be ignored. Otherwise, DAAST Wrappers
received should be accepted.

x allowMultipleAds: a Boolean value that identifies whether multiple ads are allowed in
the requested DAAST response. If true, both Pods and stand-alone ads are allowed. If
false, only the first stand-alone Ad (i.e. no sequence value for the Ad) in the requested
DAAST response is allowed.

x fallbackOnNoAd: a Boolean value that provides instruction for using an available Ad
when the requested DAAST response returns no ads. If true, the audio player should
select from any stand-alone ads available. If false and the Wrapper represents an Ad in
a Pod, the audio player should move on to the next Ad in a Pod; otherwise, the audio
player can follow through at its own discretion where no-ad responses are concerned.

Infinite Loops
When serving an Ad involves a chain of Wrappers, an infinite loop is possible where a chain of
Wrappers never results in a final InLine DAAST response. The audio player can be
programmed to detect these loops and react accordingly, or may limit the total number or
wrapper redirects.

Audio Player
Implementation
Note

The audio player should be aware of infinite Wrapper loops and be prepared to
respond either with an <Error> or other appropriate action.

3.3.1.3 Wrapper Creative
In some cases, the Companion creative for an Ad may be included with resource files in the
Wrapper, while redirecting the audio player to another server for the Inline Linear portion of the
Ad.

Creative elements in a Wrapper are used to provide files for Companion as or to collect tracking
information on the InLine creative that are served subsequent to the Wrapper. If the
<Creatives> element is included in the Wrapper, one or more <Creative> elements may be
included (but are not required; an empty <Creatives> element is acceptable). At most, each
<Creative> element may contain one <Linear> or <CompanionAds> element.

Wrapper creative differ from InLine creative. The following sections describe each in detail.

3.3.1.4 Linear Creative Format within a Wrapper
The most important difference between a Wrapper Linear creative and an Inline one is that a
Wrapper Linear creative is absent of any media files. The only elements allowed in a Wrapper
Linear creative are <AudioInteractions> and <TrackingEvents>. These tracking elements
enable tracking data to be collected at the Wrapper for any events that occur in the Inline Linear
creative that is served following the Wrapper. See section 3.1.5.1 for more information on Linear
tracking events.

© 2014 Interactive Advertising Bureau 49 DAAST_v1.0_Draft

A Linear creative in a DAAST Wrapper is structured as illustrated in the following diagram:

Audio Player
Implementation
Note

The audio player must send requests to each of the tracking URIs provided in the
Wrapper elements under <TrackingEvents> and <AudioInteractions>
whenever the associated tracking event occurs in the InLine Linear Ad that is
served.

3.3.1.5 Companion Creative Format in Wrapper Ads
Unlike Linear creative, Companion creative can be served directly within a DAAST Wrapper
response but may also be used for tracking purposes. When Companion creative are not
included in the Wrapper response, only Companion tracking events (which are optional) need to
be provided.

The structure for a Companion in a Wrapper response that is used for tracking purposes is
illustrated in the following diagram:

An Inline Companion clickthrough can be tracked in the Wrapper using the
<CompanionClickTracking> element. See section 3.1.5.2 for details about when to use the
clickthrough and click-tracking elements.

Ad Server
Implementation
Note

The <CompanionClickTracking> element can be used in a Wrapper to track
clicks on InLine Companion creative. However, correct association of the Inline
clickthrough to the appropriate Wrapper tracking element may not be an exact
match when multiple Companions are offered.

© 2014 Interactive Advertising Bureau 50 DAAST_v1.0_Draft

When multiple Companion creative are included in the Inline response, identifying which
Companion clickthrough event should be associated with the Wrapper tracking element can be
difficult. The audio player may associate Inline Companion clickthrough activity to Wrapper
<CompanionClickTracking> events at its own discretion. The Companion id attribute may be a
useful association if provided, or the audio player can match width and height attributes.

Audio Player
Implementation
Note

The audio player must attempt to associate Inline Companion clickthrough activity
with appropriate <CompanionClickTracking> elements in the Wrapper if
provided. Methods for association are at the video player’s discretion.

The structure for a DAAST Wrapper response that serves Companion creative directly within
the Wrapper is identical to the structure for an Inline DAAST response and is illustrated in
section 3.2.2.1.

When the audio player displays a Companion Ad from creative that was provided directly within
the <Wrapper> element, the audio player should track the Companion Ad the same way it would
track an Ad provided in an <InLine> element.

3.3.1.6 Wrapper Conflict Management and Precedence
When Companion creative are included directly in the Wrapper response, conflict may occur. In
a DAAST Ad, whether served with multiple Wrappers or in one Inline response, all creative
offered is intended to be part of the same creative concept, and the audio player should attempt
to display all creative presented in the response (or in a chain of responses). However, when
conflict occurs, the audio player should favor creative offered closest to the Inline response.

For example, if a Wrapper contains Companion creative and the Inline response also contains
Companion creative, the Companion creative in the Inline response should be selected (unless
both creative can be displayed without conflict).

In another example, if the Inline response is absent of any Companion creative but two or more
Wrappers contain Companion creative, then creative for the Wrapper served closest to the
Inline response should be favored. However, if multiple creative can be served without conflict,
the audio player should attempt to display whatever creative it can.

3.3.2 Error Reporting
The <Error> element enables the audio player to provide feedback to ad servers when an Ad
cannot be served. In DAAST 1.0, detailed error codes and specifications for format are provided
to enable detailed error logging for better ad serving diagnostics.

Providing more detailed error codes enables stronger diagnostics and enables better technology
development over time. If ad servers can collect more detailed information about why their ads
or specific creative couldn’t be served, they can improve their systems to produce fewer errors.

The <Error> element is an optional element nested within the <InLine> or <Wrapper>
element. It is used to track errors for an Ad. An error for an Inline Ad that is part of a chain of
wrapper ads will produce an error for each of the wrappers used to serve the Inline Ad.

An <Error> element is also provided at the root DAAST level and is primarily used to report a
“No Ad” response. See section 3.3.2.4 for more information.

© 2014 Interactive Advertising Bureau 51 DAAST_v1.0_Draft

3.3.2.1 Ad Server Details: <Error> Element
An <Error> element includes a URI that provides a tracking resource for the error. This error-
tracking resource is called when the audio player is unable to display the Ad.

The following example is a sample DAAST response that includes the <Error> element for an
Inline Ad.

<InLine>
 …
 <Error>
 <![CDATA[http://adserver.com/error.gif]>
 </Error>
 …
</InLine>

If the ad server wants to collect more specific details about the error from the audio player (as
listed in section 3.3.2.3), an [ERRORCODE] macro can be included in the URI.

3.3.2.2 Audio Player Details
If an error occurs while trying to load an Ad and the <Error> element is provided, the audio
player or system acting on behalf of the audio player must:

Request the error source file using the URI provided.

Replace the [ERRORCODE] macro, if provided, with the appropriate error code listed in the table
in section 3.3.2.3. At a minimum, error code 900 (Unidentified error) can be used, but a more
specific error code benefits all parties involved.

If the Ad was served after a chain of Wrapper Ad responses, the audio player or system acting
on behalf of the audio player must also return error details as listed above for each Wrapper
response that also includes error parameters. Macro responses must be correctly percent-
encoded per RFC 3986.

The following table lists DAAST 1.0 error codes and their descriptions.

3.3.2.3 DAAST Error Codes Table

Code Description

100 XML parsing error.

101 DAAST schema validation error.

102 DAAST version of response not supported.

200 Trafficking error. Audio player received an Ad type that it was not expecting and/or
cannot display.

201 Audio player expecting different DAAST ad format.

202 Audio player expecting different duration.

203 Audio player expecting different size.

© 2014 Interactive Advertising Bureau 52 DAAST_v1.0_Draft

Code Description

300 General Wrapper error.

301 Timeout of DAAST URI provided in Wrapper element, or of DAAST URI provided in a
subsequent Wrapper element. (URI was either unavailable or reached a timeout as
defined by the audio player.)

302 Wrapper limit reached, as defined by the audio player. Too many Wrapper responses
have been received with no InLine response.

303 No Ads DAAST response after one or more Wrappers.

400 General Linear error. Audio player is unable to display the Linear Ad.

401 File not found. Unable to find Linear/MediaFile from URI.

402 Timeout of MediaFile URI.

403 Couldn’t find MediaFile that is supported by this audio player, based on the attributes of
the MediaFile element.

405 Problem displaying MediaFile. Audio player found a MediaFile with supported type but
couldn’t execute. MediaFile may include: unsupported codecs, different MIME type than
MediaFile@type, unsupported delivery method, etc.

406 Couldn’t find MediaFile of requested duration. Audio player calls this only if and when
the ad opportunity presents itself. See section 3.3.4 for defining the duration of the
break when the [BREAKLENGTH] macro is provided.

600 General CompanionAds error.

601 Unable to display Companion because creative dimensions do not fit within Companion
display area (i.e., no available space).

602 Unable to display Required Companion.

603 Unable to fetch CompanionAds/Companion resource.

604 Couldn’t find Companion resource with supported type.

900 Undefined Error.

901 General API error.

© 2014 Interactive Advertising Bureau 53 DAAST_v1.0_Draft

3.3.2.4 No Ad Response
When the ad server does not or cannot return an Ad, the DAAST response should contain only
the root <DAAST> element with optional <Error> element, as shown below:

<DAAST version=”3.0”>
 <Error>
 <![CDATA[http://adserver.com/noad.gif]>

</Error>
</DAAST>

The DAAST <Error> element is optional but if included, the audio player must send a request
to the URI provided when the DAAST response returns an empty InLine response after a chain
of one or more wrapper ads. If an [ERRORCODE] macro is included, the audio player should
substitute with error code 303.

Besides the DAAST level <Error> resource file, no other tracking resource requests are
required of the audio player in a no-ad response in either the Inline Ad or any Wrapper ads.

3.3.3 Industry Icon Support
Several initiatives in the advertising industry involve using an icon to provide some extended
functionality such as to communicate with consumers or otherwise fulfill requirements of a
specific initiative. Often this icon and its functionality may be provided by a vendor, and is not
necessarily served by the ad server or included in the creative itself.

One example of icon use is for compliance to certain Digital Advertising Alliance (DAA) self-
regulatory principles for Interest-Based Advertising (IBA), previously known as Online
Behavioral Advertising (OBA). This section provides an overview of how audio players can
support the use of icons in a general manner while using the DAA’s Advertising Option icon,
commonly known as the “AdChoices” icon, as a specific example.

General
Implementation
Note

Supporting industry icons in digital audio is only required if the audio player has a
built-in visual component in which the icon can be displayed.

3.3.3.1 Icon Use Case: AdChoices for Interest-Based Advertising (IBA)
The DAA sets forth principles that endeavor to give consumers a better understanding of, and
greater control over, ads that are customized based on the consumer’s interests. This control is
made available to the consumer in the form of the AdChoices icon, which is displayed in a
prominent location in or around the Ad creative. When a consumer clicks the icon, they may be
offered: information about the ad server and data providers used to select the Ad, options to
learn more about IBA, and the ability for consumers to opt out from receiving IBA ads in the
future.

3.3.3.2 The <Icons> Element
DAAST 1.0 includes support for the <Icons> element, which is offered under the <Linear>
creative element for both Inline and Wrapper ads.

© 2014 Interactive Advertising Bureau 54 DAAST_v1.0_Draft

The following diagram illustrates the general process for how the <Icons> element is called in a
DAAST response:

The Icon Provider Server may be the same server that serves the DAAST response but more
commonly is a vendor that serves the icon from its own systems.

When the <Icons> element is included in the DAAST response, the player displays the object
when the accompanying liner ad is played.

Audio Player
Implementation
Note

Since a vendor often serves icons and may charge advertising parties for each
icon served, the player should not pre-fetch the icon resource until the resource
can be displayed. Pre-fetching the icon may cause the icon provider to falsely
record an icon view when the icon may not have been displayed yet.

3.3.3.3 Attributes for the <Icon> Element
The <Icons> element was designed to support multiple industry initiatives that involve icons.
The most prevalent initiative at the release of DAAST 1.0 was the AdChoices program in the
US. However, other programs exist and future programs may develop.

To support multiple icon programs, the <Icons> element may include multiple <Icon> elements.
Each <Icon> element includes attributes to tell the player how to display the icon when multiple
icons are included as well as what to do when multiple icons of the same program are served
with an Ad (as when a chain of wrapper ads each include their own icons). Details about
handling precedence and icon collisions can be read in section 3.3.3.6. Required attributes
indicate program, size and display location. Addition optional attributes enable other details for
the video player.

The following <Icon> element attributes are required:

x program: Identifies the industry initiative that the icon supports. When icon elements of
multiple programs are served in a chain of Wrapper ads, the player uses this information
to display only one icon from each program.

x height: The height (in pixels) of the icon to be displayed.
x width: The width (in pixels) of the icon to be displayed.

© 2014 Interactive Advertising Bureau 55 DAAST_v1.0_Draft

x xPosition: The horizontal alignment location (in pixels) that the player uses to place the
top-left corner of the icon relative to the ad display area (not necessarily the player
display area). Accepted values are “left,” “right,” or a numeric value (in pixels). A
value of “0” (zero) is the leftmost point of the display area.

x yPosition: The vertical alignment location (in pixels) that the player uses to place the
top-left corner of the icon relative to the display area. Accepted values are “top,”
“bottom,” or a numeric value (in pixels). A value of “0” (zero) is the topmost point of the
display area.

The xPosition and yPosition attributes are used to position the icon relative to the display
area. If the display area is resized, these values should be used to reposition the icon relative to
the new display area of the Ad.

The following <Icon> element attributes are optional:

x apiFramework: The API needed to execute the Icon creative, if applicable.
x offset: Start time (in HH:MM:SS or HH:MM:SS.mmm format) for when the player should

display the icon. The time indicated is offset from when the icon’s associated <Linear>
creative is first played.

x duration: The amount of time (in HH:MM:SS or HH:MM:SS.mmm format), for which the
player should display the icon. If not present, the video player should display the icon
while the ad is played or until the listener interacts with the ad or the icon, if applicable.

Audio Player
Implementation
Note

The audio player should display the icon element for as long as the ad is played or
until the listener interacts with ad or the icon. If the duration attribute is included,
then the icon should be displayed for the duration indicated.

3.3.3.4 Structure of the <Icons> Element
The <Icons> element is a container for one or more <Icon> elements. Each <Icon> element
must contain a resource element that is one of: <StaticResource>, <IFrameResource>, or
<HTMLResource>. The resource element must contain a CDATA element that includes the URI
to the icon resource file. Optional tracking elements are also provided so that the icon provider
can track views and clicks.

© 2014 Interactive Advertising Bureau 56 DAAST_v1.0_Draft

The following diagram illustrates the structure of the <Icon> element. Dashed connector lines
represent optional elements.

3.3.3.5 Icon Clicks and Tracking
One common goal of programs that use ad icons is to provide consumers with information. This
information can be built into the resource file implemented for the icon, or an additional URI can
be provided that opens a page when the user clicks the icon. The <Icon> element includes an
optional <IconClicks> element used to load an informational page in a new window as well as
track when the ad is clicked.

The <IconClicks> element is optional, but if provided must include one <IconClickThrough>
element that contains a CDATA-wrapped URI to the information page. The player must load this
page in a new window when the user clicks the icon. If the Icon resource is a scripted file, such
as Flash™, the resource file may handle the clickthrough details and may not need to use the
<IconClicks> element.

Optionally, the <IconClicks> element may also include one or more <IconClickTracking>
elements used for tracking clicks, each with its own CDATA-wrapped URI to a tracking
resource. When the user clicks the icon, the player simultaneously loads the
<IconClickThrough> URI in a new window and the tracking resources for any
<IconClickTracking> elements. The following example shows a simplified section of a
DAAST response where the <Icon> element uses the <IconClicks> element.

<Icon>
 …
 <IconClicks>
 <IconClickThrough>
 <![CDATA[http://iconprovider.com/info]>
 </IconClickThrough>
 <IconClickTracking>
 <![CDATA[http://iconprovider.com/click.gif]>
 </IconClickTracking>
 </IconClicks>
</Icon>

© 2014 Interactive Advertising Bureau 57 DAAST_v1.0_Draft

To track icon views (similar to tracking impressions for ads), the <Icon> element provides an
optional <IconViewTracking> element. This element should contain a CDATA-wrapped URI to
a tracking resource file that the player must load only after the icon is visible to the user. If a
time offset value is indicated using the offset attribute in the <Icon> element, the video player
must withhold loading the tracking resource until the time indicated.

The following example focuses on the <IconViewTracking> element in a DAAST response
where the <Icon> element includes the offset attribute:

<Icon [required attributes] offset=”00:00:05”>
 …
 <IconViewTracking>
 <![CDATA[http://iconprovider.com/view.gif]>
 </IconViewTracking>
</Icon>
The tracking resource for the <IconViewTracking> element in the example above should not
be loaded until 5 seconds after the creative served with the icon is visible to the user.

3.3.3.6 Precedence and Conflict Management:
As an ad goes through a delivery chain, companies may include their own icon element in their
wrapper responses. Sometimes these multiple icon elements are all for the same program and
the player must decide on only one icon to display. When icon elements represent more than
one program, one icon from each program should be displayed.

The player can use its own business rules to decide which icon to display, along with any
specific program recommendations. For example, when multiple AdChoices icons are offered,
the DAA program recommendation is to select the icon that is closest to the creative.

If no other rules govern the selection of which icon to display, the player should choose the one
closest to the creative. That is, if the <Icon> element is included within the Inline Ad, then that
icon is the closest to the creative. However, if the Inline Ad contains no <Icon> element, but the
last Wrapper Ad in a chain of Wrappers did contain the <Icon> element, then the icon from that
last Wrapper Ad is the one closest to the creative.

When multiple icons from more than one icon program are included in a chain of Wrapper ads,
the player must decide which icon from each program should be displayed. Again, the player
can use its own business rules; however, the icons must not overlap each other. If all program
icons use the same xPosition and yPosition values, the player can use width and height
attribute values to offset coordinates relative to the display area.

© 2014 Interactive Advertising Bureau 58 DAAST_v1.0_Draft

3.3.3.7 Icons in Companion Ads
The existing DAAST elements for <CompanionAds> can each include multiple <Companion>
elements, respectively, which enables ad servers to include icons with these creative types
without using the <Icon> element.

The following example of a creative element shows how an industry icon can be implemented
for Companion ads:

<Creative>
 <CompanionAds>
 <Companion>
 <!--link to Companion creative-->
 </Companion>
 <Companion>
 <!--link to industry icon-->
 </Companion>
 </CompanionAds>
</Creative>

3.3.4 Macros
Sometimes ad servers would like to collect metadata from the audio player when tracking event
URIs are accessed. For example, the position of the audio player playhead at the time a
tracking event URI is accessed is useful to the ad server and is data that can only be known at
the time of the prescribed tracking event. This data cannot be built into the URI at the time the
DAAST response is built and served.

The following macros enable the audio player to provide certain details to the ad server at the
time tracking URIs are accessed.

[ERRORCODE]: replaced with one of the error codes listed in section 3.3.2.3 when the
associated error occurs; reserved for error tracking URIs.

[CONTENTPLAYHEAD]: replaced with the current time offset “HH:MM:SS.mmm” of the
audio content.

[BREAKLENGTH]: replaced with the amount of time "HH:MM:SS:mmm" remaining for
the ad break or pod. Used with error code 406.

[CACHEBUSTING]: replaced with a random 8-digit number.

[ASSETURI]: replaced with the URI of the ad asset being played.

When replacing macros, the video player must correctly percent-encode any characters as
defined by RFC 3986.

DAAST doesn’t provide any guidance on URI format, but using the [CACHEBUSTING] macro
simplifies trafficking, enabling ad servers to easily search and replace the appropriate macro for
cache busting.

© 2014 Interactive Advertising Bureau 59 DAAST_v1.0_Draft

4 Human Readable Schema
Element Attributes Required Section
DAAST version Yes 3.1.1

/Error No
DAAST/Ad id, sequence Yes 3.1.2
DAAST/Ad/InLine Yes* 3.1.4

/AdSystem version No 3.1.4.2
/Description No 3.1.4.2
/Advertiser No 3.1.4.2
/Expires No 3.1.4.2
/Survey No 3.1.4.2
/Error No 3.1.4.2
/Pricing model, currency No 3.1.4.2
/Extensions No 3.1.4.2

/Extension type Yes* 3.1.4.2
/AdTitle Yes 3.1.4.1
/Category Yes 3.1.4.1
/Impression id Yes 3.1.4.1
/Creatives Yes 3.1.6

/Creative id, sequence, adID,
apiFramework

Yes 3.1.6

/CreativeExtensions No 3.1.6.3
/CreativeExtension 3.1.6.3

/Linear Skipoffset (optional) Yes 3.2.1
/AdParameters xmlEncoded No 3.2.1.5
/Duration Yes 3.2.1.2
/MediaFiles Yes 3.2.1.3

/MediaFile id, delivery, type,
bitrate, minBitrate,
maxBitrate, width,
height, scalable,
mantainAspectRatio,
codec, apiFramework

Yes 3.2.1.4

 /AudioInteractions No 3.2.1.6
/ClickThrough No 3.2.1.6
/ClickTracking No 3.2.1.6
/CustomClicks No 3.2.1.6

/TrackingEvents No 3.2.1.7
/Tracking event No 3.2.1.7

/Icons No 3.3.3.2
/Icon program, width,

height, xPosition,
yPosition

Yes* 3.3.3.3

duration, offset,
apiFramework

No 3.3.3.3

© 2014 Interactive Advertising Bureau 60 DAAST_v1.0_Draft

/StaticResource
/IFrameResource
/HTMLResource

creativeType
(StaticResource only)

Yes* 3.3.3.4

/IconClicks No 3.3.3.5
/IconClickThrough No 3.3.3.5
/IconClickTracking id No 3.3.3.5

/IconViewTracking No 3.3.3.5
/CompanionAds Required (3.2.2.4) No 3.2.2

/Companion id, width, height,
assetWidth,
assetHeight,
expandedWidth,
expandedHeight,
apiFramework,
adSlotID, logoTile,
logoTitle, logoArtist,
logoURL

No 3.2.2.1
(attributes
in 3.2.2.5)

/StaticResource
/IFrameResource
/HTMLResource

creativeType
(StaticResource only)

Yes* 3.2.2.2

/AdParameters xmlEncoded No 3.2.2.3
/AltText No 3.2.2.3
/CompanionClickThrough No 3.2.2.7
/CompanionClickTracking id No 3.2.2.7
/TrackingEvents No 3.2.2.7

/Tracking event No 3.2.2.7
VAST/Ad/Wrapper followAdditonalWrap

pers,
allowMultipleAds,
fallbackOnNoAd

No 3.1.3
(diagram)
0 (general)

3.3.1.2
(attributes

)
/Impression id Yes 3.3.1.1
/DAASTAdTagURI Yes 3.3.1.1
/AdSystem version No 3.3.1.1
/Error No 3.3.1.1
/Extensions No 3.3.1.1

/Extension type Yes* 3.3.1.1
/Creatives No 3.3.1.1

/Creative id, sequence, adID No 3.3.1.1
/Linear Yes 3.3.1.4

/TrackingEvents No 3.2.1.7
/Tracking No 3.2.1.7

/AudioInteractions No 3.2.1.6
/ClickTracking No 3.2.1.6
/CustomClicks No 3.2.1.6

/Icons No 3.3.3.2
/Icon program, width,

height, xPosition,
Yes 3.3.3.3

© 2014 Interactive Advertising Bureau 61 DAAST_v1.0_Draft

*Either one of listed elements is required or the requirement for the element is dependent on whether a parent
element is used. In the case of Inline creative, at least on element of either Linear, or CompanionAds is required.

yPosition
duration, offset,
apiFramework

No 3.3.3.3

/StaticResource
/IFrameResource
/HTMLResource

creativeType
(StaticResource only)

No 3.3.3.4

/IconClicks No 3.3.3.5
/IconClickThrough No 3.3.3.5
/IconClickTracking No 3.3.3.5

/IconViewTracking No 3.3.3.5
/CompanionAds required No 3.2.2

/Companion id, width, height,
assetWidth,
assetHeight,
expandedWidth,
expandedHeight,
apiFramework,
adSlotID, logoTile,
logoTitle, logoArtist,
logoURL

No 3.2.2.1
(attributes
in 3.2.2.5)

/StaticResource
/IFrameResource
/HTMLResource

creativeType
(StaticResource only)

No 3.2.2.2

/AdParameters xmlEncoded No 3.2.2.3
/AltText No 3.2.2.3
/CompanionClickThrough No 3.2.2.7
/CompanionClickTracking No 3.2.2.7
/TrackingEvents No 3.2.2.7

/Tracking event No 3.2.2.7

© 2014 Interactive Advertising Bureau 62 DAAST_v1.0_Draft

5 DAAST Terminology
The following terminology may apply to either digital video or digital audio environments.
However, for the purposes of this document, the following terminology is described in the
context of digital audio and the DAAST specification.

Ad Injector Server: A server that request ads on behalf of an audio player and inserts received
ads into a stream of content that is served to the player. Upon serving the ad-injected stream to
the player, the ad-injection server send relevant tracking information on behalf of the player.

Ad Pod: An ad Pod is sequence of Linear ads played back-to-back, like a commercial break
with multiple ad spots on in an audio program.

Aggregator: An audio channel that collects and organizes audio content from other sources.
Aggregators benefit listeners by providing a variety of content in one channel. The audience for
an aggregated channel of content offers greater reach for advertisers than a focused channel
would provide.

Audio Player: An audio playback environment used to manage audio programming. Audio
players are provided by an audio aggregator or can be custom-built by an audio content
publisher.

Content Distribution Networks (CDN): Vendors that provide the technical heavy lifting of
moving streamed digital audio content around the Internet and ensuring scalability and
performance for listeners.

Companion Ad: Commonly a display banner or rich media ad that appears within a visual
component in an audio player or on a webpage where the audio player is implemented.
Companion ads may remain on the page after the related in-stream ad ends. A companion ad
can also be a skin that wraps the audio player.

Clickthrough: A URL for page that opens the advertisers target webpage when a listener clicks
(or taps) a companion ad that displays in the audio player or on the player’s webpage.

DAAST: An acronym for Digital Audio Ad Serving Template, which is an IAB guideline and XML
schema that describes the XML structure for an audio ad response. DAAST-enabled audio ad
players can receive audio ad responses from any ad server.

DAAST Tag: A URI that returns a DAAST response in XML format when called.

DAAST Wrapper: A DAAST ad response from an ad server that points to another ad server for
the ad (sometimes referred to as the downstream DAAST response).

Digital Audio: Audio programming available to consumers on a streaming basis, delivered via
the wired and mobile Internet.

Digital Audio Ad: An audio played in the context of a digital audio program.

InLine Ad: A DAAST ad response that contains all the information needed to play a digital
audio ad. No additional calls to other ad servers are needed after a DAAST InLine ad response
is received.

In-Stream Audio Ad: An ad that plays within a streaming audio player.

© 2014 Interactive Advertising Bureau 63 DAAST_v1.0_Draft

Linear Ad: Linear ads are like radio commercials and can play before the audio programming
plays (pre-roll), during a break in the audio program (mid-roll), or after the audio program ends
(post-roll). Using an API or other technology, Linear ads can be made interactive using
technology such as voice recognition, mobile device actions such as “shake” or “tilt,” or simply
taking advantage of a visual component the listeners can click or tap.

Master Ad: For audio ad campaigns use companion ads, the linear portion of the ad unit that
plays within the audio content is referred to as the master ad for the companion.

Podcasts: A podcast is an audio program that listeners can access to portable devices or their
computers in an offline mode.

Primary Ad Server: The first ad server that the audio player calls to for ad content.

Pureplay Stream: Personalized and on-demand, streamed audio services that create playlists
based on user preferences of artists, tracks, or genres.

Redirect: See “DAAST Wrapper”

Satellite: This system transmits audio with orbiting communication satellites rather than ground-
based transmission.

Terrestrial Stream: Live digital audio streams of terrestrial radio stations.

VAST: The Video Ad Serving Template is an IAB guideline and XML schema that describes the
XML structure for a video ad response. VAST enables video ad responses to come from any ad
server.

Vendor Ad Server: The ad server that the audio player calls after receiving a DAAST wrapper
response (redirect) from the primary ad server or other vendor ad servers. Vendor ad servers
may include agency servers, ad networks, or audio ad exchange platforms. Eventually, an ad
server must provide a DAAST response that includes all the creative elements needed to
display the ad.

VMAP: Video Multi Ads Playlist is an IAB guideline that describes the XML structure for a
playlist of video ads sent from an ad server to a video player. The VMAP specification and
guideline can be applied in the audio environment, but was not intended for use with audio.

© 2014 Interactive Advertising Bureau 64 DAAST_v1.0_Draft

	Executive Summary
	Intended Audience
	1 General Overview
	1.1 Rooting Digital Audio in Technology for Video
	1.2 Audio Players and Devices
	1.3 How Ad Serving Works in Display Advertising
	1.3.1 Audio Ad Serving Using an XML Template
	1.3.2 Digital Ad Tracking: Client-Side Vs. Server-side
	1.3.3 Tracking With An Ad-Injection Server
	1.3.4 Moving Toward Client-Side Tracking in Digital Audio
	1.3.5 Caching and Asset Transcoding with Ad-Injection

	1.4 Ad Types in Digital Audio
	1.4.1 Linear Ads
	1.4.2 Companion Ads
	1.4.3 Ad Pods
	1.4.4 Skippable Ads

	1.5 What This Template Specification is Not

	2 Compliance Recommendations
	2.1 Audio Ad Server Expectations
	2.2 Audio Player Expectations
	2.2.1 Requesting DAAST Ad Types
	2.2.2 Imposing Template Structure

	2.3 Ad Type Compliance
	2.4 Minimal Compliance Recommendations
	2.5 Browser Security for Flash™ and JavaScript™
	2.5.1 crossdomain.xml for Flash
	2.5.2 Cross Origin Resource Sharing (CORS) for JavaScript

	2.6 XML Namespace

	3 DAAST Implementation Details
	3.1 General DAAST Document Structure
	3.1.1 Declaring the DAAST response
	3.1.2 The Root <Ad> Element
	3.1.2.1 Ad Attributes
	3.1.2.2 Ad Structure

	3.1.3 The <Wrapper> Element
	3.1.4 The <InLine> Element
	3.1.4.1 Required <InLine> Elements
	3.1.4.2 Optional <InLine> Elements

	3.1.5 DAAST Tracking
	3.1.5.1 Summary of DAAST Tracking Elements
	3.1.5.2 Companion Click Tracking
	3.1.5.3 The <Impression> Element
	3.1.5.4 Impression vs. “Start” Event
	3.1.5.5 Multiple Impressions
	3.1.5.6 Tracking Records for Multiple Parties

	3.1.6 The <Creatives> Element
	3.1.6.1 Creative Attributes
	3.1.6.2 DAAST Example: Linear with Companions
	3.1.6.3 Creative Extensions

	3.2 DAAST Requirements by Compliance Format
	3.2.1 Linear Ad Format
	3.2.1.1 Linear Elements
	3.2.1.2 The <Duration> Element
	3.2.1.3 The <MediaFiles> Element
	3.2.1.4 Media File Attributes
	3.2.1.5 The <AdParameters> Element (Optional)
	3.2.1.6 The <AdInteractions> Element (Optional)
	3.2.1.7 The <TrackingEvents> Element (Optional)
	3.2.1.8 Multiple Tracking Events of the Same Type
	3.2.1.9 The <Icons> Element (Optional)

	3.2.2 Companion Ad Format
	3.2.2.1 Companion Ad Structure
	3.2.2.2 Companion Resource Elements
	3.2.2.3 Other Companion Elements
	3.2.2.4 The “required” Attribute for CompanionAds
	3.2.2.5 Companion Attributes
	3.2.2.6 The Optional adSlotID Attribute for <Companion>
	3.2.2.7 Companion Tracking Details

	3.2.3 Ad Pods
	3.2.3.1 Ad Pods and Stand-Alone Ads
	3.2.3.2 Playing a Pod of Ads
	3.2.3.3 Ad Pod Example

	3.2.4 Skippable Linear Creative
	3.2.4.1 Skipoffset Attribute
	3.2.4.2 Skip Event
	3.2.4.3 Progress Event

	3.3 General DAAST Requirements
	3.3.1 DAAST Wrapper Ads (Ad Server Redirects)
	3.3.1.1 General Wrapper Structure
	3.3.1.2 Wrapper Chain and Multiple Ad Management
	3.3.1.3 Wrapper Creative
	3.3.1.4 Linear Creative Format within a Wrapper
	3.3.1.5 Companion Creative Format in Wrapper Ads
	3.3.1.6 Wrapper Conflict Management and Precedence

	3.3.2 Error Reporting
	3.3.2.1 Ad Server Details: <Error> Element
	3.3.2.2 Audio Player Details
	3.3.2.3 DAAST Error Codes Table
	3.3.2.4 No Ad Response

	3.3.3 Industry Icon Support
	3.3.3.1 Icon Use Case: AdChoices for Interest-Based Advertising (IBA)
	3.3.3.2 The <Icons> Element
	3.3.3.3 Attributes for the <Icon> Element
	3.3.3.4 Structure of the <Icons> Element
	3.3.3.5 Icon Clicks and Tracking
	3.3.3.6 Precedence and Conflict Management:
	3.3.3.7 Icons in Companion Ads

	3.3.4 Macros

	4 Human Readable Schema
	5 DAAST Terminology

